Projet de Fin d’Etudes

Etude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production

Professeurs tuteurs :
M. Marc BARTH (INSA)
Mme Nathalie GARTISER (INSA)
M. David DAMAND (EM Strasbourg)

Tuteurs industriels :
M. Jacques LONGA
M. Stéphane MORNAY

Juin 2012
PROJET DE FIN D’ETUDES

CONDENSE

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Nathalie HERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promotion</td>
<td>2012</td>
</tr>
<tr>
<td>Titre</td>
<td>Etude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production</td>
</tr>
<tr>
<td>Soutenance</td>
<td>Juin 2012</td>
</tr>
<tr>
<td>Structure d’accueil</td>
<td>FM Logistic – LGeCo INSA Strasbourg – Humanis EM Strasbourg</td>
</tr>
<tr>
<td>Nb de volume(s)</td>
<td>1</td>
</tr>
<tr>
<td>Nb de pages</td>
<td>75</td>
</tr>
<tr>
<td>Nb de références bibliographiques</td>
<td>64</td>
</tr>
<tr>
<td>Résumé</td>
<td>La performance des entrepôts logistiques joue un rôle important dans la performance globale de toute Supply Chain. Les prestataires de services logistiques ont besoin de planifier l’évolution de l’aménagement du système physique pour s’adapter à la demande de leurs clients. Une vision claire, globale et détaillée des activités logistiques est alors nécessaire. De nombreux travaux portant sur l’aménagement des systèmes de production ont été menés. La contribution proposée est une étude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production. Le PFE étant orienté recherche, une étude bibliographique a précédé des applications concrètes basées sur les activités de l’entrepôt de FM Logistic Brumath.</td>
</tr>
<tr>
<td>Mots clés</td>
<td>Logistique d’entrepôt, conception, management, théorie des graphes, aide à la décision / Warehousing, design, management, graph theory, decision aid.</td>
</tr>
<tr>
<td>Traduction</td>
<td>The performance of the logistic warehouses plays an important part in the global performance of any Supply Chain. The logistic service providers need to plan the evolution of the physical system design to adapt themselves to their customers’ request. A clear, global and detailed vision of the logistic activities is then necessary. Many researches were conducted about the design of layouts for facilities in manufacturing systems. The proposed contribution is a study of the transferability, for the design of logistic warehouses, of properties used for the design of manufacturing systems. The project being research-oriented, a bibliographical study preceded concrete applications based on the activities of the warehouse of FM Logistic Brumath.</td>
</tr>
</tbody>
</table>
Remerciements

Au terme de ce projet, je tiens à remercier dans un premier temps les enseignantschercheurs qui m’ont accompagnée tout au long de mon initiation à la recherche, pour leur disponibilité et pour les réponses claires et précises qu’ils ont apportées à mes questionnements, tant sur le sujet d’étude que sur le projet de thèse et la recherche en général :

M. Marc BARTH, pour m’ avoir permis de construire ce projet PRT/PFE orienté recherche, pour sa contribution méthodologique à la construction du raisonnement scientifique, pour sa contribution à l’écriture de l’article scientifique et pour son accompagnement dans ma recherche de thèse ;

M. David DAMAND, pour avoir créé un lien entre ce projet et l’Ecole de Management de Strasbourg, pour ses invitations aux évènements organisés par la Chaire Supply Management et pour sa contribution à l’écriture de l’article scientifique ;

Mme. Nathalie GARTISER, pour m’avoir guidée dans mes recherches en apportant sa vision claire du raisonnement scientifique, de la thèse et des différentes sections de recherche ;

Les nombreuses personnes rencontrées dans le cadre de l’initiation à la recherche pour leur contribution à la réflexion sur le sujet d’étude et sur le projet de thèse.

Je remercie ensuite les collaborateurs de FM Logistic, qui ont contribué à faire du projet de fin d’études une expérience enrichissante :

M. Yannick BUISSON, pour avoir permis de monter ce projet en lien avec FM Logistic ;

M. Jacques LONGA et M. Stéphane MORNAY, pour leur suivi régulier tout au long de ce projet et pour m’avoir apporté une vision opérationnelle des différentes problématiques abordées en partageant leur expérience du terrain ;

M. Emmanuel RUFFENACH, pour m’avoir accueillie sur le site de FM Logistic ;

L’ensemble du personnel de FM Logistic à Brumath, qui m’a réservé un accueil chaleureux et qui a répondu à mes questions.
Table des matières

Condensé .. 2
Remerciements ... 3
Préambule ... 8

Section A : Projet global d'initiation à la recherche

1 Le projet global d’initiation à la recherche .. 10
 1.1 Le cas d'étude : FM Logistic .. 10
 1.1.1 Présentation de l'entreprise ... 10
 1.1.2 Démarche de recherche .. 12
 1.2 Première étape : Projet de Recherche Technologique ... 12
 1.3 Seconde étape : Projet de Fin d'Etudes ... 13

2 L'environnement du Projet de Fin d'Etudes .. 14
 2.1 La recherche scientifique ... 14
 2.1.1 Les laboratoires de recherche ... 14
 2.1.1.1 Laboratoire LGECO de l’INSA de Strasbourg .. 15
 2.1.1.2 Laboratoire Humanis de l’EM de Strasbourg ... 15
 2.1.2 Le travail de recherche ... 15
 2.1.2.1 Recherches bibliographiques ... 15
 2.1.2.2 Lecture des articles récupérés ... 16
 2.1.2.3 Écriture d’un article scientifique ... 16
 2.2 L’application en entreprise ... 17
 2.2.1 Le sujet d’étude .. 17
 2.2.2 Le travail d’application ... 17

3 Les activités annexes .. 17

4 Bilan .. 18

Section B : Article de conférence

1 INTRODUCTION ... 21

2 PROPRIÉTÉS ÉTUDIÉES .. 22

3 REPRÉSENTATIONS ET TRADUCTIONS OPérationnelles .. 23
 3.1 Ordre total .. 23
 3.2 Classification .. 24
 3.3 Niveau .. 24

4 LIMITES ET PERSPECTIVES DE RECHERCHE ... 25

5 REFERENCES .. 26
Section C : Etude de PFE

1 Introduction .. 28
2 Cas d’application et méthode .. 31
3 Filtrages contextuels .. 34
 3.1 Filtre contextuel des données de flux .. 34
 3.1.1 Définition des données de flux en logistique d’entrepôt 34
 3.1.2 Filtre contextuel des données de flux pour l’aménagement d’ateliers de production 34
 3.1.3 Application du filtre contextuel aux données de flux logistiques 35
 3.2 Filtre contextuel des propriétés d’analyse ... 36
4 Définition des propriétés retenues .. 36
 4.1 Type d’analyse 1 : Gammes de production alternatives .. 36
 4.1.1 PA1 : Flexibilité des postes de charge ... 36
 4.1.2 PA2 : Flexibilité des gammes de production .. 37
 4.1.3 PA3 : Identification de la meilleure gamme ... 38
 4.2 Type d’analyse 2 : Création / modification des gammes de production 39
 4.2.1 PA4 : Précédence des opérations .. 39
 4.2.2 PA5 : Précédence des postes de charge .. 39
 4.3 Type d’analyse 3 : Classification .. 40
 4.3.1 PA6 : Classification des postes de charge .. 40
 4.3.2 PA7 : Classification des produits ... 41
 4.3.3 PA8 : Classification produits / postes de charge .. 41
 4.4 Type d’analyse 4 : Comparaison des ressources .. 42
 4.4.1 PA9 : Fréquence de visite des postes de charge .. 42
 4.4.2 PA17 : Poste de charge commun ... 42
 4.5 Type d’analyse 5 : Flux linéaire ... 43
 4.5.1 PA22 : Fréquence des mouvements en séquence 43
 4.5.2 PA23 : Fréquence des mouvements de retour ... 43
 4.5.3 PA24 : Fréquence des mouvements de répétition 44
 4.5.4 PA25 : Fréquence des mouvements de dépassement 44
 4.6 Type d’analyse 6 : Ordre séquentiel des opérations .. 44
 4.6.1 PA26 : Ordre total .. 44
 4.6.2 PA27 : Ordre partiel .. 45
 4.6.3 PA28 : Niveau .. 45
 4.6.4 PA29 : Squelette ... 46
 4.7 Type d’analyse 7 : Poste de charge de début et de fin de gamme de production 46
 4.7.1 PA30 : Source racine .. 46
 4.7.2 PA31 : Source totale ... 46

Projet de Fin d’Etudes
Etude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production

HERR Nathalie GM5 – ISP Juin 2012
4.7.3 PA32 : Source partielle ... 47
4.7.4 PA33 : Puits racine ... 47
4.7.5 PA34 : Puits total ... 47
4.7.6 PA35 : Puits partiel ... 47
4.8 Type d’analyse 8 : Connexité ... 47
4.8.1 PA38 : Composant fortement connexe (CFC) 47
4.8.2 PA39 : Point d’articulation ... 48
4.8.3 PA41 : Circuit ... 49
4.8.4 PA42 : Pont ... 49

5 Applications des propriétés d’analyse aux données de flux 50
5.1 Application de la PA1 : Flexibilité des ressources 50
5.2 Application de la PA2 : Flexibilité des gammes logistiques 52
5.3 Application de la PA3 : Identification de la meilleure gamme 56
5.4 Application de la PA6 : Classification des ressources 58
5.5 Application de la PA9 : Fréquence d’utilisation des ressources 59
5.6 Application de la PA17 : Ressource commune ... 61
5.7 Application de la PA26 : Ordre total ... 62
5.8 Application de la PA28 : Niveau ... 64

6 Définition d’un référentiel de propriétés d’analyse pour l’aménagement d’entrepôts logistiques ... 66
6.1 Objectifs visés ... 66
6.2 Filtrage des propriétés d’analyse .. 66

7 Limites et perspectives de recherche ... 68
8 Références ... 70

Liste des annexes

Annexe 1 : Processus ... 74
Annexe 2 : Etude de la flexibilité des ressources ... 75

Table des tableaux

Tableau 1 : Liste des propriétés d'analyse pour l'aménagement d'ateliers de production 32
Tableau 2 : Liste des propriétés d'analyse renommées pour le domaine de la logistique d'entrepôt .. 49
Tableau 3 : Extraite de l'étude de la flexibilité des ressources 51
Tableau 4 : Légende des abréviations utilisées dans les arbres des opérations 52
Tableau 5 : Référentiel de propriétés d'analyse pour l'aménagement d'entrepôts logistiques .. 67
Tableau 6 : Référentiel de propriétés d'analyse pour l'aménagement d'ateliers de production 68
Table des figures

Figure 1 : Positionnement de l'entrepôt logistique au sein des Supply Chains 10
Figure 2 : Les dates clés de l'histoire de FM Logistic .. 11
Figure 3 : Composition du groupe FM .. 11
Figure 4 : Représentation des activités et de leur suivi .. 13
Figure 5 : Décomposition de l'activité de préparation de commandes en actions 14
Figure 6 : Logo de l'équipe LICIA du laboratoire LGeCo de l’INSA de Strasbourg 15
Figure 7 : Logo du laboratoire Humanis de l’EM de Strasbourg 15
Figure 8 : Représentation de flux au sein d’un entrepôt logistique 30
Figure 9 : Types de déplacement entre les postes de charge ... 43
Figure 10 : Exemple de répartition de postes de charge en CFC 48
Figure 11 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Réception ... 53
Figure 12 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Approvisionnement .. 54
Figure 13 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Préparation de commandes ... 55
Figure 14 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Expédition ... 55
Figure 15 : Identification de la meilleure gamme _ Réception et Expédition 56
Figure 16 : Identification de la meilleure gamme _ Approvisionnement 57
Figure 17 : Identification de la meilleure gamme _ Préparation de commandes 57
Figure 18 : Classification des emplacements .. 58
Figure 19 : Graphe conceptuel de la classification pour des missions de réception et d’expédition .. 59
Figure 20 : Représentation conceptuelle de la fréquence de visite des emplacements de stockage picking .. 60
Figure 21 : Seconde représentation conceptuelle de la fréquence de visite des emplacements de stockage picking ... 61
Figure 22 : Graphe conceptuel d’une préparation de commandes en ordre total 62
Figure 23 : Graphe conceptuel d’une réception en ordre total 63
Figure 24 : Graphe conceptuel d’une expédition en ordre total 63
Figure 25 : Graphe conceptuel de missions de picking par niveaux 64
Figure 26 : Graphe conceptuel de deux missions de préparation de commandes par niveaux, avec identification des ressources communes .. 65
Préambule

Le projet de fin d’étude s’inscrit dans une démarche d’initiation à la recherche. Il a donc été mené en collaboration avec des laboratoires de recherche et a été l’occasion de rédiger un article scientifique sur la problématique étudiée.

Ce rapport est scindé en trois parties distinctes :

- la section A expose le projet d’initiation à la recherche dans sa globalité ;
- la section B présente l’article scientifique reprenant un échantillon des résultats de l’étude et rédigé pour une conférence ;
- la section C est enfin un développement de l’article présenté dans la section B présentant l’étude complète effectuée en PFE.
Section A

Préambule

Cette première section constitue une introduction au travail de recherche à proprement parler. Elle décrit l'orientation et le déroulement du projet personnel global dans lequel s’inscrit le projet de fin d’études. Ce PFE est en effet intégré dans un projet plus vaste, qui tire son origine dans un besoin qui a émergé en mai 2011.

Le cas d’étude est présenté et les activités annexes en lien avec le projet et ayant contribué à la montée en compétences sont évoquées. Un bilan personnel du projet de recherche est enfin proposé.
Le projet global d’initiation à la recherche

Ce Projet de Fin d’Etudes s’inscrit dans un projet personnel global. Ce dernier a pris son point de départ à la fin de la seconde année du cycle ingénieur dans un questionnement, à savoir : débuter la vie active après la formation à l’INSA par une prise de fonctions dans l’industrie ou par la préparation d’une thèse dans un laboratoire de recherche. Afin de permettre une prise de décision éclairée, il a été décidé d’orienter les deux projets de la troisième année du cycle ingénieur vers la recherche. Cette coloration des projets visait à permettre la prise de connaissance du monde de la recherche, du déroulement d’une thèse et de la recherche en elle-même.

Ce PFE orienté recherche ne vise pas à proposer une solution avec un résultat physique visible en entreprise. Suivant un raisonnement scientifique, il consiste à formuler une problématique scientifique basée sur un besoin industriel et à mener une étude bibliographique.

Dans le cadre de cette initiation à la recherche, ce rapport est rédigé dans le style impersonnel d’un article scientifique.

1.1 Le cas d’étude : FM Logistic

1.1.1 Présentation de l’entreprise

FM Logistic est un prestataire de services logistiques international, qui gère et réalise différentes prestations en entrepôt, du conditionnement à la distribution, dans onze pays. Cette entreprise apporte aussi ses services pour l’optimisation de la Global Supply Chain d’industriels ou de distributeurs. Elle entretient ainsi des liens avec des producteurs, des importateurs, des entrepôts de distribution et des distributeurs (cf. figure 1).

![Figure 1 : Positionnement de l’entrepôt logistique au sein des Supply Chains](http://www.fmlogistic.fr/fmlogistic/index.php/fr/)
Comme le montre la figure 2, FM Logistic a étendu son panel d’activités tout au long de son histoire, ainsi que son implantation dans le monde.

Les prestations logistiques proposées aujourd’hui sont la réception et l’expédition de marchandise, la manutention de palettes, le transport et des services à forte valeur ajoutée tels que la préparation de commandes ou le conditionnement à façon. Ces prestations se partagent dans plusieurs secteurs d’activité, à savoir l’industrie alimentaire, les produits de grande consommation, les produits de soin à la personne, les produits industriels et électroniques et les produits de luxe et de cosmétique.

FM compte parmi ses clients des industriels des secteurs agro-alimentaires, DHP, santé, Hi-Tech, biens de grande consommation, ainsi que des géants de la grande distribution.

L’entreprise FM Logistic fait partie du groupe FM, dont elle constitue la branche « Produits Grande Consommation » (cf. figure 3).

Le groupe FM est composé de trois autres entreprises. FM Health Supply Chain constitue la branche « Santé » et propose des solutions d’entreposage et de distribution pour les produits
pharmaceutiques. La filiale FM2i, ingénierie informatique du groupe FM, conçoit, développe, intègre et déploie des solutions innovantes dédiées à l’optimisation de la Supply Chain de ses clients, tant en France qu’à l’international. Des expertises sont proposées dans les domaines suivants : gestion de stock et pilotage des flux d’entrepôt ; ordonnancement et pilotage du transport ; gestion de production dédiée au conditionnement ; supervision de la Supply Chain ; échange de Données Informatisées (EDI et EAI) ; technologie Radio codes Barres, Radio Vocal, RFID, … NG Concept, dernière branche du groupe FM, propose une expertise dans l’ingénierie bâtiment en environnement industriel, sur les thèmes de la conception, l’aménagement et la construction de bâtiments.

1.1.2 Démarche de recherche

FM Logistic a une volonté d’amélioration continue et est donc en constante évolution et à la recherche de solutions. L’entreprise fait preuve d’un intérêt pour la recherche académique. Un partenariat de long terme a ainsi été conclu entre FM et l’Ecole de Management de Strasbourg par la signature d’une convention de mécénat en octobre 2011.

Un sujet de recherche a été proposé par FM Logistic dans le cadre de cette collaboration. Il a été formulé de la façon suivante : « Représenter le réseau d’activités et simuler de nouveaux scénarios opératoires pour évaluer et planifier leur performance ».

1.2 Première étape : Projet de Recherche Technologique

Le projet de recherche technologique qui a été mené au cours du premier semestre de la troisième année de cycle ingénieur a été l’occasion de débuter l’initiation à la recherche. Ce projet a été basé sur le sujet de recherche proposé par FM Logistic et a pris la forme d’une étude bibliographique au cours de laquelle ont été abordés les thèmes suivants : modélisation de systèmes, complexité des systèmes, évaluation de la performance, Supply Chain et Lean Manufacturing.

Sur la base des résultats des recherches menées, le besoin de FM Logistic a été reformulé en problématique scientifique de la manière suivante : « Construire un modèle de référence permettant de représenter et d’évaluer la performance d’une Supply Chain interne, dans le cadre du Lean Manufacturing, dans le but de prévoir les impacts de l’évolution d’un processus sur l’ensemble de la Supply Chain, par la simulation de scénarios ».

Afin de résoudre cette problématique, il a été choisi d’utiliser un principe de base, qui est « tout représenter pour tout comprendre », pour construire un modèle de référence répondant aux besoins. Le but poursuivi par la représentation est de voir le détail des activités, ainsi que les indicateurs permettant de les suivre, mais aussi d’avoir une vision des liens existant entre ces activités, entre les différents indicateurs et entre ces deux types d’éléments (cf. figure 4). Se pose alors le problème de la compréhension de cette représentation. Il s’agit d’avoir une vision d’ensemble et de comprendre le phénomène de propagation existant au sein de cet ensemble de données.
De tous ces éléments ont été tirées deux thématiques de recherche : la représentation des activités et l’évaluation de la performance. La première thématique correspond au sujet de recherche traité dans ce rapport. L’évaluation de la performance a fait l’objet d’un second PFE, mené par Elvia LEPORI : « Apports et limites du modèle SCOR pour l’évaluation de la performance en Supply Chain Management : Application à un entrepôt logistique ».

1.3 Seconde étape : Projet de Fin d’Etudes

Le projet de fin d’étude consiste en une étude sur le thème de la représentation des activités. Afin de représenter un système, il s’agit d’avoir une représentation globale de ses activités et des liens existant entre elles, ainsi qu’une représentation détaillée de chaque activité et des liens existant entre les éléments du système. Une telle représentation fine des données du terrain permet la simulation de scénarios.

Une vision détaillée nécessite des données. Un point a ainsi été fait sur les données présentes chez FM Logistic. Les activités sont tout d’abord définies dans des guides de pilotage de processus. La représentation qui en a été tirée (cf. annexe 1) ne permet pas de visualiser le détail de chacune des activités. Un niveau de détail plus fin des activités est proposé dans un référentiel, qui décompose chacune des activités en actions. Un exemple de décomposition est donné sur la figure 5 pour l’activité de préparation de commandes. Les données nécessaires pour construire une vision détaillée de chaque activité existent donc, mais la représentation sous forme de tableaux qui en est faite ne permet pas de répondre au besoin de représentation globale et détaillée. Il manque en effet la définition des liens liant les activités entre elles, de ceux liant les actions au sein d’une même activité, mais aussi de ceux liant les actions provenant de plusieurs activités différentes. Or, ces liens doivent par exemple être connus pour répondre aux questions suivantes :

- Quel impact la modification d’une ressource utilisée pour une certaine action aura-t-elle sur la performance de l’action ? ;
- Quel impact cette modification aura-t-elle sur la performance de la ressource elle-même ? ;
- Quel impact une telle modification aura-t-elle sur les différentes activités concernées (sur leur délai d’exécution, par exemple) ? ;
- Est-il plus intéressant de mettre en place une ressource très flexible ou bien trois ressources moins flexibles seront-elles plus performantes ?

<table>
<thead>
<tr>
<th>service</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full box picking without PMO</td>
<td>MOVING FROM THE FRONT OF THE PICKING ALLEY TO EMPTY PALLET</td>
</tr>
<tr>
<td></td>
<td>TAKING THE EMPTY PALLET</td>
</tr>
<tr>
<td></td>
<td>CHECKING THE LOCATION ADDRESS ON THE LISTING</td>
</tr>
<tr>
<td></td>
<td>SCANNING THE REFERENCE LABEL</td>
</tr>
<tr>
<td></td>
<td>TAKING PICKUP AND PUTTING IT ON THE PALLET</td>
</tr>
<tr>
<td></td>
<td>REPOSITIONING PICKUP ON THE PALLET</td>
</tr>
<tr>
<td></td>
<td>PUTTING AN INTER-LAYER PALLET</td>
</tr>
<tr>
<td></td>
<td>MOVING TO MORE PICKUP LOCATION TO THE NEXT ONE</td>
</tr>
<tr>
<td></td>
<td>PUTTING DOWN THE PALLET IN THE ALLEY</td>
</tr>
<tr>
<td></td>
<td>PUTTING A TOP CROPS ON THE PALLET</td>
</tr>
<tr>
<td></td>
<td>STRETCH WRAPPING THE PREPARED PALLET MANUALLY</td>
</tr>
<tr>
<td></td>
<td>PUTTING THE SEATING TAPE ON THE PALLET</td>
</tr>
<tr>
<td></td>
<td>TAKING THE PALLET</td>
</tr>
<tr>
<td></td>
<td>MOVING FROM THE PICKING BAR CENTER TO THE THE SHIPMENT WAITING AREA BAR CENTER</td>
</tr>
<tr>
<td></td>
<td>MOVING FROM THE PICKING BAR CENTER TO THE PRINTER</td>
</tr>
<tr>
<td></td>
<td>MOVING FROM THE PRINTERS TO THE SHIPMENT WAITING AREA BAR CENTER</td>
</tr>
<tr>
<td></td>
<td>PUTTING DOWN THE PALLET</td>
</tr>
<tr>
<td></td>
<td>FASTING THE ADDRESS LABEL ON THE PALLET</td>
</tr>
</tbody>
</table>

Figure 5 : Décomposition de l’activité de préparation de commandes en actions

L’ajout de la notion de liens à la représentation détaillée déjà définie chez FM permet d’obtenir une représentation dite globale. Afin d’obtenir une telle représentation des flux, il existe des réponses scientifiques dans le domaine de la production. Une étude a par exemple été menée dans le cadre d’une thèse sur le sujet de la représentation des flux physiques transitant par un atelier de production (« Identification Systématique de Structures Visuelles de Flux Physiques de Production » [Dkhil, 2001b]). Le domaine d’application de cette étude étant différent de celui du PFE, le transfert des résultats obtenus lors de la thèse ne peut être immédiat. Avant toute utilisation des conclusions de l’étude menée dans le domaine de la production, il convient en effet de vérifier que la base de cette étude a bien un sens dans le domaine de la logistique d’entrepôt. Le travail de PFE s’est donc attaché à vérifier la transposabilité, pour l’aménagement d’entrepôts logistiques, de cette base, à savoir les propriétés utilisées pour l’aménagement de systèmes de production.

2 L’environnement du Projet de Fin d’Etudes

L’étude menée au cours du projet de fin d’études comporte deux aspects principaux : la recherche scientifique et l’application des résultats trouvés aux données d’un entrepôt logistique. Le travail de PFE a donc été effectué à la fois au sein de laboratoires de recherche et en immersion en entreprise.

2.1 La recherche scientifique

L’étude déroulée lors du PFE s’inscrit dans la recherche appliquée, qui regroupe les travaux de recherche scientifique entrepris pour résoudre des problèmes spécifiques et permettre d’atteindre un objectif déterminé à l’avance. Ce type de recherche se distingue de la recherche fondamentale par le suivi d’objectifs pratiques et la prévision d’une application.

2.1.1 Les laboratoires de recherche

2.1.1.1 Laboratoire LGeCo de l’INSA de Strasbourg

Figure 6 : Logo de l’équipe LICIA du laboratoire LGeCo de l’INSA de Strasbourg

Le Laboratoire du Génie de la Conception de l’INSA de Strasbourg regroupe plusieurs équipes de recherche. L’équipe concernée par le thème de recherche du PFE est l’équipe LICIA (Ingénierie de Conception, Cognition et Intelligence Artificielle), qui s’intéresse aux thèmes de l’innovation dans la conception et de la résolution des problèmes liés aux processus de conception, avec la prise en compte des dimensions technique, économique, humaine et organisationnelle.

Les domaines d’application des études menées au sein de ce laboratoire sont les systèmes manufacturiers, l’environnement et la santé.

2.1.1.2 Laboratoire Humanis de l’EM de Strasbourg

Figure 7 : Logo du laboratoire Humanis de l’EM de Strasbourg

Une Chaire Supply Management a été créée au sein de ce laboratoire pour promouvoir les recherches effectuées dans le domaine du Supply Chain Management et pour établir un lien fort entre la recherche et le monde industriel. Ce lien est construit par la mise en place d’un dialogue et d’échanges dans le cadre de conférences et de débats. Beaucoup d’entreprises sont impliquées dans cette chaire, telles que FM Logistic, Messier Bugatti, SteelCase, De Dietrich, Auchan ou Siemens.

2.1.2 Le travail de recherche

Le travail de recherche s’est organisé autour de trois grandes phases : (i) la recherche bibliographique à proprement parler ; (ii) la lecture des articles trouvés ; (iii) la rédaction d’un article scientifique. Ces trois phases, qui se sont chevauchées dans le temps, ont chacune été l’occasion d’un apprentissage spécifique.

2.1.2.1 Recherches bibliographiques

Des recherches bibliographiques ont été faites dans différentes bases de données (ScienceDirect, Scopus et ISI Web), sur, entre autres, les différents thèmes suivants :
- Représentation des flux physiques ;
- Représentation des flux en atelier de production ;
- Représentation des flux en entrepôt logistique ;
- Manques en représentation de systèmes complexes ;
- Utilisation de la théorie des graphes en Supply Chain.

De nombreuses requêtes ont été soumises aux différentes bases de données, telles que :
- « Graph theory supply chain » ;
- « physical flow representation » ;
- « representation supply chain » ;
- « warehouse AND flows AND representation » ;
- « representation physical flow distribution center » ;
- « representation warehouse » ;
- « warehouse design ».

2.1.2.2 Lecture des articles récupérés

142 articles ont été récupérés suite aux différentes recherches effectuées. Une majeure partie de ces articles sont en anglais et certains présentent des états de l’art de certains domaines ou problématiques.

La lecture de ces articles a permis de répondre à deux objectifs principaux, à savoir (i) constituer la bibliographie nécessaire pour l’écriture d’un article scientifique ; (ii) définir les propriétés recensées par Dkhil [Dkhil, 2001a] pour l’aménagement de systèmes de production.

Bien qu’ils n’aient pas tous été cités dans l’article présenté dans la partie C de ce rapport, chacun de ces articles a contribué à la prise de connaissance des différents domaines abordés et à la montée en compétences dans les problématiques étudiées.

2.1.2.3 Écriture d’un article scientifique

L’initiation à la recherche s’est conclue par la rédaction, en collaboration avec M. Barth et M. Damand, d’un article scientifique (cf. section B) présentant la méthode utilisée, une partie des résultats obtenus au cours du projet de fin d’études et des conclusions partielles de l’étude. Le but de l’écriture d’un tel article est le partage des connaissances avec la communauté scientifique.

multidisciplinaire est l’occasion de dresser un état des lieux des nouvelles pratiques de gestion opérationnelle des différents flux logistiques.

Un large panorama de thèmes sera abordé, incluant la modélisation des systèmes logistiques, les outils d’aide à la décision logistique, les systèmes d’information logistique, l’environnement juridique et réglementaire de la logistique, la conception et le pilotage de la Supply Chain, l’organisation des opérations de production, de transport et d’entreposage, la mesure et l’analyse de la performance logistique, la gestion des risques logistiques.

2.2 L’application en entreprise

2.2.1 Le sujet d’étude

Le travail de recherche a été accompagné d’une application sur les activités de l’entrepôt FM Logistic de Brumath. Le cadrage de cette application a été défini en cohérence avec le PFE d’Elvia LEPORI, traitant des flux d’informations accompagnant les activités de FM Logistic. Il a été choisi de concentrer les deux études sur les mêmes activités, afin d’obtenir une étude complète (des points de vue flux physiques et flux d’informations) en fin de PFE.

Sur la base de critères d’exhaustivité des types d’activités concernés et de volumes (donc de chiffre d’affaires), l’étude a été restreinte aux flux relatifs à un certain client. Le choix effectué a permis la prise en compte d’un panel représentatif des activités proposées par FM Logistic, à savoir la réception, la manutention de palettes, l’entreposage, la préparation de commandes et l’expédition. Le choix de l’activité de préparation de commandes, qui est au centre des flux physiques engendrés par les commandes du client, est cohérent par rapport à ce qui est dit dans la littérature scientifique. Cette activité est en effet considérée comme étant la plus chère et nécessitant le plus de main d’œuvre, donc considérée par les professionnels de la logistique comme l’activité présentant le plus d’opportunités d’amélioration [De Koster et al., 2007].

2.2.2 Le travail d’application

Une application concrète des notions abordées dans le travail de recherche a été faite pour vérifier et appuyer les interprétations effectuées dans le domaine de la logistique d’entrepôt (cf. partie 4 de la section C : Définition des propriétés retenues). Concrètement, une recollection d’informations sur les flux physiques a été effectuée dans le WMS (Warehouse Management System) de l’entrepôt. Les données récupérées ont ensuite été utilisées pour appliquer les notions présentées dans la partie 4 de l’article présenté dans la section C de ce rapport (Définition des propriétés retenues). Les résultats de ce travail d’application sont développés dans la partie 5 (Application des propriétés d’analyse aux données de flux).

L’immersion en entreprise a été très utile pour mener à bien cet aspect appliqué du travail de recherche, puisqu’elle a permis la visualisation quotidienne des flux réels sur lesquels est basée l’étude.

3 Les activités annexes

L’initiation à la recherche a été complétée par la participation à différents évènements liés à la recherche. Cela a contribué à améliorer la connaissance du monde de la recherche.

Plusieurs évènements peuvent être cités :
- Soutenance d’une thèse sur le thème de la représentation schématique des connaissances et des logiques d’action ;
- Séminaire senior de recherche, au LGéC, sur les thèmes de l’optimisation et algorithmes évoluionnaires pour les systèmes complexes, optimisation stochastique, modélisation de processus et optimisation multicritères de systèmes dynamiques ;
- Séminaire junior de recherche, au LGéC, avec notamment la présentation d’une étude des apports de la théorie des jeux en conception de chaînes logistiques ;
- Rencontré avec le directeur logistique de General Motors, sur le thème de l’évaluation et le pilotage de la performance d’un atelier de production au quotidien ;
- Rencontré avec un auditeur de l’ASLOG (Association française pour la logistique), sur les thèmes de l’audit, des modèles pour le pilotage de la performance, des indicateurs et des stratégies de leur mise en place, des plans de progrès et des plans d’action ;
- Visite de la plateforme de distribution de pièces de rechange de la société Kuhn Parts, à Monswiller, et échanges sur le thème de la logistique internationale orientée clients : « la démarche Kuhn Parts dans la distribution des pièces de rechange » ;
- 38e conférence PHARE organisée par l’EM Strasbourg, sur le thème de la performance achats : les défis.

La lecture de plusieurs mémoires de thèse a de plus permis de prendre connaissance en détails de ce qui est demandé en termes de méthodologie et de rédaction pour l’obtention d’un doctorat.

Toutes ces expériences et les connaissances sur le monde de la recherche et le domaine de la Supply Chain engendrées au cours de cette initiation ont été partagées avec les étudiants de quatrième année du département mécanique de l’INSA de Strasbourg au cours d’une présentation. Les thèmes abordés ont été les suivants : le domaine de la Supply Chain, avec des exemples d’études en entrepôt logistique (représentation des flux et évaluation de la performance), l’environnement de la recherche, la thèse et l’après-thèse.

4 Bilan

Dans le cadre de ce projet d’initiation à la recherche, le projet de fin d’études s’est avéré être très enrichissant, tant du point de vue des connaissances théoriques et opérationnelles que du point de vue humain. L’application dans le domaine de la logistique d’entrepôt m’a permis de découvrir un nouveau domaine d’application, présentant des similitudes avec le domaine de la production abordé lors de ma formation à l’INSA, mais aussi des problématiques et des contraintes spécifiques. Les collaborations avec différentes personnes issues du domaine de la recherche et de l’industrie m’ont de plus fait prendre conscience de l’importance du vocabulaire à utiliser pour garantir une bonne communication et éviter des malentendus.

Le projet global a été l’occasion de découvrir la recherche scientifique appliquée, par différentes « portes ». Le travail de recherche bibliographique, la réflexion menée sur la problématique étudiée et le travail d’écriture pour l’article scientifique ont ainsi contribué à la prise de connaissance du domaine de la recherche, qui m’était encore totalement inconnu au début de ce projet. Le travail d’écriture de l’article scientifique a notamment été formateur à bien des égards. Cette tâche somme toute ardue requiert une grande rigueur dans le choix des mots utilisés, celui de l’enchaînement des idées et dans la synthèse de la formulation et contribue ainsi à structurer la pensée et donc la restitution des idées.

L’initiation à la recherche dont a fait partie ce projet de fin d’études m’a de plus apporté une ouverture d’esprit, dans le sens où elle m’a amenée à découvrir des connaissances ne
faisant pas partie de mon domaine de prédilection et de prendre conscience des liens forts existant entre différents domaines à première vue totalement différents, tels que l’engineering, la production, la logistique ou la gestion.

L’ensemble des expériences vécues durant l’initiation à la recherche a répondu aux attentes que j’en avais. Au terme de ce projet personnel global, je porte un regard différent sur les problématiques industrielles et je suis à même de prendre une décision motivée et mûrement réfléchie quant à la préparation d’une thèse. Suite à cette première expérience de la recherche, je souhaite compléter ma formation d’ingénieur, qui m’a apporté des connaissances techniques et organisationnelles, par l’acquisition d’un raisonnement scientifique. Je suis en effet persuadée que la maîtrise d’un tel raisonnement est un réel atout pour répondre aux attentes de l’industrie, par l’apport d’une démarche rigoureuse et d’une créativité permise par l’ouverture d’esprit sur des domaines connexes, en plus d’une expertise dans le domaine principal étudié. Je suis donc à la recherche d’un sujet de thèse, dans le domaine de la Supply Chain et plus précisément sur le thème de la gestion de la production, qui est au plus proche de mon projet professionnel.
Section B

Préambule

Cette seconde section présente l'article scientifique rédigé pour la conférence GOL 2012*, qui se tiendra au Havre, du 17 au 19 octobre 2012. Cet article a été soumis le 15 mai 2012 pour examen. Un retour quant à son acceptation ou non sera fait le 15 juillet 2012.

Cet article expose une partie des résultats obtenus durant l'étude faite en PFE. Son écriture, avec M. Barth et M. Damand, co-auteurs, a parachevé l'initiation à la recherche suivie tout au long du PFE. Ce travail a été formateur et a constitué une application concrète de la formation à la recherche. L'article suit le plan canon IMMRID présenté dans la section A (cf. partie 2.1.2.3. Ecriture d'un article scientifique).

Un large panorama de thèmes sera abordé, incluant la modélisation des systèmes logistiques, les outils d’aide à la décision logistique, les systèmes d’information logistique, l’environnement juridique et réglementaire de la logistique, la conception et le pilotage de la Supply Chain, l’organisation des opérations de production, de transport et d’entreposage, la mesure et l’analyse de la performance logistique, la gestion des risques logistiques.
Etude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production

HERR Nathalie
LGeCo INSA Strasbourg
24 Bld de la Victoire
67084 Strasbourg, France
nathalie.herr@insa-strasbourg.fr

BARTH Marc
LGeCo INSA Strasbourg
24 Bld de la Victoire
67084 Strasbourg, France
marc.barth@insa-strasbourg.fr

DAMAND David
Humanis EM Strasbourg
61 Av. de la Forêt Noire
67085 Strasbourg, France
damand@em-strasbourg.eu

RESUME
La performance des entrepôts logistiques joue un rôle important dans la performance globale de toute Supply Chain. Les prestataires de services logistiques ont besoin de planifier l’évolution de l’aménagement du système physique qu’ils pilotent pour s’adapter à la demande de leurs clients. Une vision claire, globale et détaillée des activités logistiques est alors nécessaire. De nombreux travaux portant sur l’aménagement des systèmes de production ont été menés. Cet article propose une étude de la transférabilité, dans le domaine de l’aménagement d’entrepôts logistiques, de quelques propriétés utilisées pour l’aménagement des systèmes de production.

Categories and Subject Descriptors
Conception et pilotage, Aide à la décision.

General Terms
Design, Management, Experimentation.

Keywords
Design, warehousing, graph theory.

1 INTRODUCTION
Les entrepôts logistiques sont des composants essentiels de toute Supply Chain [7]. Les activités logistiques qu’ils effectuent influencent grandement l’efficacité et le rendement des réseaux de distribution [9]. On peut citer la manutention de palettes (réception et expédition) et le stockage, mais aussi d’autres activités à valeur ajoutée, telles que la préparation de commandes (picking), la mise en kit, l’étiquetage ou la customisation de produits [7]. Ces différentes activités logistiques sont dépendantes de la demande des partenaires de l’entrepôt logistique. Ces partenaires correspondent à deux autres maillons de la Supply Chain : la production en amont et la distribution en aval. La demande change rapidement en fonction du marché. Il est donc nécessaire pour les prestataires de services logistiques d’être performants et de s’adapter rapidement à la demande de leurs clients.

Afin de pouvoir apporter une réponse satisfaisante en termes de délais et de flexibilité à leurs clients, les gestionnaires d’un entrepôt logistique ont besoin de planifier l’évolution de l’aménagement du système physique qu’ils pilotent. La caractérisation des flux physiques amenés à transiter dans l’entrepôt correspond à la décision la plus importante à prendre au cours d’une (re)conception du système physique. Cette caractérisation permet par exemple la détermination des types de stockage, la définition des unités de stockage et de prélèvement, ou la séparation de l’aire de préparation de commandes en zones [9]. Une planification efficace nécessite la prévision des impacts de l’évolution d’une partie ou de la totalité du système physique sur l’ensemble des activités de l’entrepôt. Une vision globale des activités qui entraînent des flux physiques au sein de l’entrepôt logistique est nécessaire, de même que la visualisation des caractéristiques de ces activités et de leurs liens.

Une manière de comprendre la structure du réseau des activités consiste à visualiser les flux physiques transitant dans l’entrepôt. Une réponse possible à ce besoin est la représentation de ces flux à l’aide de graphes, qui sont communément utilisés pour représenter des systèmes comportant des connections complexes entre leurs composants [3]. Une représentation des flux physiques tels qu’ils existent réellement dans un
Projet de Fin d’Etudes
Etude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production
HERR Nathalie
GM5 – ISP
Juin 2012

entrepôt logistique est proposée sur la figure 1 pour deux missions de picking, une réception et une expédition de marchandise. Chaque mission entraîne des flux entre le poste de pilotage, les emplacements de stockage et les quais.

La figure 1 ne représente qu’un échantillon de missions correspondant à un horizon de temps très court. La représentation des missions sur un horizon significatif entraîne l’apparition d’un nombre important de flèches. Les capacités cognitives du lecteur ne lui permettent pas de comprendre la structure des flux à partir d’une telle représentation. Il s’agit alors de redessiner les flux sans tenir compte de l’agencement physique réel des ressources, pour mettre en évidence les caractéristiques des flux. Ce type de représentation correspond à ce que l’on appelle des graphes conceptuels. Les questions qui se posent sont les suivantes : quoi représenter dans un graphe conceptuel et de quelle manière ?

De nombreux travaux ont été menés sur le thème de la représentation des systèmes de production à l’aide de graphes conceptuels. Les flux physiques que l’on peut rencontrer en logistique d’entrepôt sont du même type que ceux que l’on rencontre en production. La différence majeure entre les deux domaines réside dans la nature des produits stockés. Contrairement à l’entrepôt de production (« production warehouse »), dont la seule fonction est le stockage de matières premières, d’en-cours et de produits finis d’une seule entreprise, l’entrepôt logistique (« distribution warehouse ») sert à stocker des produits provenant de différentes entreprises de production et destinés à être livrés à des clients externes [9].

L’analyse de la structure des flux est facilitée par la définition de propriétés caractérisant les flux physiques existant entre les différentes ressources du système physique de production [6]. Selon Tompkins [12] et Zhou [14], les propriétés utiles sont celles qui permettent l’identification de relations spécifiques entre l’ensemble des ressources. Différentes propriétés d’analyse des gammes de production ont été proposées dans la littérature, telles que les propriétés de classe, d’ordre, de puits ou de source [14].

Notre contribution consiste à étudier la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production. Il s’agit de déterminer si l’utilisation de ces propriétés permet d’obtenir des représentations conceptuelles mettant en évidence la structure des flux.

La section 2 présente les propriétés étudiées, le cas d’application et la méthode utilisée. Les représentations conceptuelles obtenues et leurs traductions opérationnelles sont développées dans la section 3. La section 4 présente enfin les conclusions de l’étude, ainsi que ses limites et les perspectives de recherche.

2 PROPRIÉTÉS ÉTUDIÉES
L’étude a été basée sur des données de flux d’un prestataire de services logistiques, basé en France. Les propriétés appliquées aux données de flux ont été tirées d’une liste de quarante-quatre propriétés, qui ont été recensées dans la littérature concernant le domaine de la production par Dkhil [6]. Nous nous sommes intéressés à un échantillon de trois propriétés. Le choix de ces propriétés a été basé sur des questions qui se posent en logistique d’entrepôt.

La première propriété choisie est la propriété d’ordre total. La définition d’une relation d’ordre entre les postes de charge permet de déterminer les quatre types de déplacement pouvant exister entre les ressources [6], à savoir : les mouvements en séquence, les mouvements de dépassement, les mouvements de retour arrière et les mouvements de répétition. L’identification de ces types de mouvement permet d’optimiser la circulation des
produits au travers des ressources en déterminant un sens dominant de flux de produits [13]. La minimisation des retours-arrières qui en résulte simplifie la circulation des produits. La question qui se pose est la suivante : le concept d’ordre total est-il pertinent en logistique d’entrepôt ? Lors des missions de picking, les prélevements d’articles sont effectués suivant un ordre défini. On peut alors se demander si cet ordre est comparable à un ordre total et s’il existe une notion d’ordre similaire pour les missions de réception et d’expédition de palettes.

La seconde propriété est la classification. Cette propriété se base sur la similarité des gammes de production pour former des groupes de ressources et des familles de produits [1]. Elle permet par exemple la formation de groupes de ressources plus ou moins autonomes (lots ou cellules), en fonction du séquencement des opérations, des temps de processus ou des volumes de production [8]. La question qui se pose est la suivante : l’application de cette propriété aux emplacements de stockage permet-elle d’apporter des éléments pour le choix de la stratégie de manutention de palettes en entrepôt logistique ? Deux stratégies peuvent en effet être adoptées : (i) traiter les réceptions et les expéditions en une fois, pour optimiser le temps de traitement de chaque mission, (ii) rassembler le traitement d’une réception et d’une expédition, pour optimiser les déplacements (minimiser les déplacements à vide). Afin de prendre une décision éclairée, il s’agit de déterminer si les emplacements de stockage concernés par les missions appartiennent à des zones communes.

La figure 2 montre une proposition de classification par zones, où chaque zone correspond à une surface au sol limitée. Les mouvements effectués à l’intérieur de chacune de ces zones n’excèdent ainsi pas une certaine longueur.

La dernière propriété étudiée est la propriété de niveau. Une représentation par niveaux des ressources par lesquelles transitent les flux permet de mettre en évidence un ordre séquentiel des opérations. Deux types de ressources peuvent aussi être visualisés sur un graphe de niveaux : les sources et les puits. Une source correspond à une ressource pour la première opération d’une gamme, pour tous les produits, ou pour un nombre limité de produits [6]. À l’inverse, une ressource est un puits si elle est utilisée pour la dernière opération d’une gamme [6]. La mise en évidence de ces ressources de début et de fin de gamme est utilisée dans le domaine de la production pour déterminer le meilleur emplacement des stocks de matières premières, d’en-cours et de produits finis. La question qui se pose est la suivante : l’identification des sources et des puits dans le stock de picking est-elle possible et permet-elle de définir des aménagements optimaux des ressources nécessaires en amont et en aval de l’activité de prélevement des articles ?

Des graphes ont été construits à l’aide d’un éditeur graphique pour vérifier si l’application de ces différentes propriétés permet de visualiser des caractéristiques de flux cohérentes et utiles pour l’organisation des flux physiques au sein d’un entrepôt logistique.

3 REPRÉSENTATIONS ET TRADUCTIONS OPÉRATIONNELLES

3.1 Ordre total

La figure 3 correspond à la représentation conceptuelle d’une mission de picking en ordre total. La figure 4 représente la relation d’ordre existant entre les emplacements où des palettes sont saisies ou déposées lors d’une mission de réception. La figure 5 représente la même relation pour une mission d’expédition.
3.2 Classification
L’application de la propriété de classification à une mission de réception et à une mission d’expédition est représentée conceptuellement figure 6. Elle permet de mettre en évidence trois groupes d’emplacements faisant partie d’une même zone (voir définition des zones en figure 2).

Pour les deux missions représentées, le traitement de la réception et de l’expédition en simultané permet de diminuer la distance globale parcourue et donc le temps total de traitement des missions. La propriété de classification est donc non seulement applicable aux flux d’un entrepôt logistique, mais elle peut aussi apporter une aide au pilotage des activités logistiques.

3.3 Niveau
La figure 7 est une représentation conceptuelle de deux missions de picking par niveaux. Seuls les emplacements du stock de picking ont été représentés.

Les sources et les puits peuvent être déterminés à partir de ce graphe de niveaux. D’après celui-ci, les emplacements A1 et A3 sont des sources au sein du stock de picking. L’emplacement physique visité avant ces derniers lors d’une mission complète de picking est le stock de palettes vides. On peut voir sur la figure 1 que le "stock palettes" est éloigné des emplacements de stockage A1 et A3.
Figure 7 : Graphe conceptuel de missions de picking par niveaux

Cet aménagement de l’entrepôt entraîne des déplacements longs, qui peuvent être raccourcis. Le rapprochement ou la création d’un stock de palettes vides à proximité des sources minimiserait en effet les distances à parcourir. D’une telle visualisation des flux peut aussi être déduit le meilleur emplacement du poste de contrôle, qui trouvera sa position optimale au plus proche des puits. D’après la figure 7, l’emplacement D2 est un puits pour les deux missions de picking. Le poste de contrôle trouve alors sa position optimale au plus près de D2. L’identification des sources et des puits au sein du stock de picking permet l’optimisation des chemins parcourus par la redéfinition des positions des ressources utilisées en amont et en aval. Ces diverses modifications de l’agencement des installations physiques peuvent entraîner la diminution du temps de picking. Cette activité étant généralement reconnue comme étant l’activité la plus chère [5], ce gain n’est pas négligeable.

4 LIMITES ET PERSPECTIVES DE RECHERCHE

Les quelques propriétés étudiées ont permis de vérifier que des propriétés définies pour la conception de systèmes physiques dans le domaine de la production ont un sens dans le domaine de la logistique d’entrepôt. Les différentes applications indiquent de plus que ces propriétés peuvent être utiles dans un processus de (ré)aménagement des équipements d’un entrepôt logistique.

Cette étude montre que des connaissances développées pour l’aménagement de systèmes de production sont transférables dans le domaine de l’aménagement d’entrepôts logistiques. Cela peut être expliqué par le fait que les quatre activités de base, à savoir déplacer, stocker, transformer et contrôler, se retrouvent en production et en logistique d’entrepôt. Ces activités n’ont toutefois pas la même importance dans chacun des domaines : l’activité de transformation est bien plus présente en production qu’en logistique, qui est essentiellement constituée de l’activité de déplacement. Les besoins en logistique d’entrepôt ne sont alors pas tout à fait les mêmes qu’en production. Dans un atelier de production, ce sont les flux des produits qui sont à suivre et à piloter en priorité. En logistique d’entrepôt, l’analyse des flux de produits (palettes, colis, …) permet de tirer des pistes d’amélioration de l’aménagement des installations physiques. Il permet par exemple de déterminer les déplacements inutiles (passage par un stock tampon, déplacement d’un emplacement de stockage à un autre sans ajout de valeur ajoutée entre les deux, …) ou de déterminer les temps de stockage de chaque référence. Mais le flux physique le plus important est constitué des déplacements des personnes (caristes, préparateurs de commande, …). Ces derniers sont en effet les plus importants en termes de distances parcourues. Une part non négligeable de ces déplacements est de plus effectuée « à vide », sans transport de marchandise. Le flux des personnes présente donc des possibilités d’optimisation non négligeables.

L’étude de la transposabilité des quarante-quatre propriétés recensées par Dkhil [6] permettrait de constituer un référentiel de propriétés pour l’analyse des flux dans le domaine de la logistique d’entrepôt. Ce référentiel est à compléter par d’autres propriétés à rechercher dans la littérature traitant des problématiques des
entrepôts logistiques. Il pourrait à terme servir de base à la construction d’un modèle de référence permettant une représentation globale et détaillée des flux physiques au sein d’un entrepôt logistique.

5 REFERENCES

Section C

Préambule

L’article présenté dans cette dernière section correspond à l’article de la section B développé. Cet article, rédigé dans l’optique d’une soumission pour parution dans un journal scientifique international, présente toute l’étude effectuée en PFE et apporte plus de précisions sur la méthode suivie et les enjeux du sujet. La bibliographie a aussi été développée. De même que l’article rédigé pour la conférence (cf. section B), cet article est rédigé suivant le plan IMMRID.
1 Introduction

Les entrepôts logistiques sont des composants essentiels de toute Supply Chain [Gu et al., 2007]. Les activités logistiques qu’ils effectuent influencent grandement l’efficacité et le rendement des réseaux de distribution [Rouwenhorst et al., 2000]. On peut citer la manutention de palettes (réception et expédition) et le stockage, mais aussi d’autres activités à valeur ajoutée, telles que la préparation de commandes (picking), la mise en kit, l’étiquetage ou la customisation de produits [Gu et al., 2007]. Ces différentes activités logistiques sont dépendantes de la demande des partenaires de l’entrepôt logistique. Ces partenaires correspondent à deux autres maillons de la Supply Chain : la production en amont et la distribution en aval. Par extension, c’est la conception entière de l’entrepôt et de ses aménagements qui dépend de la demande de ces deux entités.

De nombreux points sont abordés au cours de la conception d’un entrepôt [Gu et al., 2010] : (1) la caractérisation de l’entrepôt (détermination de la capacité de stockage en fonction de la saisonnalité des activités, définitions des règles de stockage, …) ; (2) le dimensionnement de l’entrepôt (traduction de la capacité de l’entrepôt en aire au sol, impacts de la caractérisation des activités sur les moyens de manutention, …) ; (3) la définition du modèle de gerbage des palettes (profondeur des voies de circulation, nombre de voies pour chaque profondeur, hauteur de stockage, angle de déplacement des palettes par rapport à l’allée, espace libre entre deux palettes stockées, longueur et largeur des allées, …), de l’agencement du stockage (emplacement des portes, orientation des allées, longueur et largeur des allées, nombre d’allées, …) et la configuration d’un éventuel système automatique de stockage et d’approvisionnement (détermination du nombre de bras élévateurs et d’allées, dimensionnement des racks de stockage, …) ; (4) la sélection de l’équipement (choix des systèmes de stockage, des engins de manutention, d’une automatisation des activités, …) ; (5) la définition des stratégies opérationnelles pour le stockage (stockage aléatoire, avec zones dédiées, basé sur les classes ABC, ou sur la durée de stockage) et pour le picking (picking par vague, groupage des commandes avec tri lors du picking, groupage des commandes avec tri après le picking, picking par zone en séquence à la commande ou par lot, picking parallèle par lot ou à la commande). L’aménagement d’un entrepôt logistique est une tâche complexe, qui détermine en grande partie les coûts logistiques internes à l’entrepôt [Rouwenhorst et al., 2000], ainsi que ses performances (coût de construction et de maintenance, coût de manutention, capacité de stockage, utilisation de l’espace, utilisation de l’équipement) [Gu et al., 2010].

La demande change rapidement en fonction du marché. Il est donc nécessaire pour les prestataires de services logistiques de s’adapter rapidement à la demande de leurs clients pour rester performant. Afin de pouvoir apporter une réponse satisfaisante en termes de délais et de flexibilité à leurs clients, les gestionnaires d’un entrepôt logistique ont besoin de planifier l’évolution de l’aménagement du système physique qu’ils pilotent. Une planification efficace nécessite la prévision des impacts de l’évolution d’une partie ou de la totalité du système physique sur l’ensemble des activités de l’entrepôt. Or, même si les activités effectuées dans un entrepôt suivent le même schéma de base, les flux engendrés ne sont jamais rigoureusement similaires. Ils dépendent en effet de leurs points de départ (emplacement de stockage, quai de déchargement, …) et d’arrivée (zone de contrôle, quai de chargement, …), qui ne sont pas les mêmes d’une mission à une autre. Selon Pierreval [Pierreval et al., 2007], si les composants qui circulent au sein d’une chaîne logistique sont complexes et de nombreux types différents, il est difficile d’appréhender leur comportement dynamique.
peut reprendre ce raisonnement en le transposant à l’intérieur d’un entrepôt logistique. Une vision globale des activités qui entraînent des flux physiques au sein de l’entrepôt logistique est donc nécessaire, de même que la visualisation des caractéristiques de ces activités et de leurs liens.

Les activités se définissent principalement par des flux, physiques et informationnels. Lorsque l’objectif est de comprendre le comportement global du réseau des équipements physiques, Pierreval [Pierreval et al., 2007] préconise de modéliser les flux de produits. La caractérisation des flux physiques amenés à transiter dans l’entrepôt correspond en effet à l’une des décisions les plus importantes à prendre au cours d’une (re)conception du système physique [Rouwenhorst et al., 2000]. Une manière de comprendre la structure du réseau des activités logistiques consiste ainsi à visualiser les flux physiques transitant dans l’entrepôt. La représentation visuelle permet en effet de faciliter la prise de connaissance et la compréhension de données. Card [Card et al., 1999] a proposé six principales causes de ce phénomène : (1) les ressources cognitives mobilisées par l’utilisateur pour traiter et analyser les informations sont réduites (facilité d’accès à une grande quantité d’informations, interaction élevée, …) ; (2) la recherche d’informations est simplifiée (beaucoup de données dans un petit espace, par exemple suite à un regroupement de données par critères, …) ; (3) les possibilités de détection de structures sont augmentées (relations entre les données, regroupements significatifs, …) ; (4) certains problèmes deviennent évidents s’ils sont représentés et peuvent alors être immédiatement identifiés (on parle d’hui “inférence visuelle”); (5) la surveillance des événements est possible (identification de changements de structure, d’apparitions ou de mouvements dans les motifs, …) ; (6) les données peuvent être manipulées. Une réponse possible au besoin de représentation visuelle des flux est l’utilisation de graphes, qui sont communément utilisés pour représenter des systèmes comportant des connexions complexes entre leurs composants [Borenstein, 2000]. L’utilisation des graphes a été proposée dans le domaine de la Supply Chain, notamment par Tzoreff [Tzoreff et al., 2002], qui a mené une étude du problème des tournées de véhicules sur la base de graphes spécifiques, avec un ou deux dépôts. Pishvaae [Pishvaae et al., 2001], quant à lui, a utilisé des graphes pour proposer une solution heuristique approchée au problème de conception du réseau d’une Supply Chain permettant de déterminer la configuration du réseau entraînant le coût le plus bas. Irani [Irani, 2000b] a proposé une liste de graphes différents utilisés depuis les années 1950 pour décrire les structures des flux transitant par des aménagements physiques (atelier de production, entrepôt, …) : (1) le « Product-Quantity (P-Q) Analysis chart », qui permet de sélectionner l’échantillon significatif de produits à utiliser pour concevoir un agencement sur la base des volumes de production ; (2) le « Operation Process Chart », qui est utilisé pour représenter les étapes de production d’un seul produit assemblé à la fois ; (3) le « Multi-Product Process Chart, qui représente tous les flux liant les machines de production, pour tous les produits fabriqués dans l’atelier ; (4) le « From-To Chart », graphe simple orienté, qui agrège les contributions de chaque produit aux flux dans un seul flux liant chaque paire de machines ; (5) le « Flow Diagram », qui est une représentation du « Multi-Product Process Chart » en hypergraphe (ne permet de représenter qu’un nombre limité de gammes).

Une représentation graphique des flux physiques tels qu’ils existent réellement dans un entrepôt logistique (graphe de type « Flow Diagram ») est proposée sur la figure 8 pour deux missions de préparation de commandes, une réception et une expédition de marchandise. Chaque mission entraîne des flux entre le poste de pilotage, les emplacements de stockage et les quais. Une mission de préparation de commandes se déroule plus précisément de la façon
suivante : le préparateur de commande part du poste de pilotage, où il récupère l’ordre de mission. Il prend ensuite une palette vide à l’emplacement « Stock palettes » et il se déplace jusqu’au premier emplacement où il doit prélever des colis. Une fois la mission de picking effectuée, il dépose la palette dans la zone de contrôle, où la commande est contrôlée. La palette est ensuite filmée à l’emplacement « Filmuse » avant d’être déposée sur un quai.

La figure 8 ne représente qu’un échantillon de missions correspondant à un horizon de temps très court. Or, une étude des flux ne permet de tirer des conclusions valables que si elle est effectuée sur un horizon de temps significatif (plusieurs mois à plusieurs années en fonction de la saisonnalité des activités). La représentation des missions sur un horizon plus long entraîne l’apparition d’un nombre important de flèches. Les capacités cognitives du lecteur ne lui permettent pas de comprendre la structure des flux à partir d’une telle représentation. Une représentation des flux physiques tels qu’ils existent réellement dans un entrepôt logistique ne répond ainsi pas au besoin de compréhension globale et détaillée des activités. Elle ne permet en effet pas de comprendre la structure des flux, ni de formuler des conclusions sur l'optimalité de leur gestion ou de l’aménagement des équipements. Il s’agit alors de redessiner les flux sans tenir compte de l’agencement physique réel des ressources, pour mettre en évidence les caractéristiques des flux. Ce type de représentation correspond à ce que l’on appelle des graphes conceptuels. La représentation conceptuelle est un des modes de représentation des connaissances [Richard, 1992], dont la fonction est essentiellement de communiquer et de transmettre une information sur le réel. Trois éléments sont classiquement distingués comme appartenant à cette classe de représentation : (i) les concepts ; (ii) les relations entre ces concepts, qui contribuent à leur définition ; et plus largement (iii) les réseaux complexes formés des interconnections entre concepts (les schémas, par exemple).

Les questions qui se posent sont alors les suivantes : quoi représenter dans un graphe conceptuel et de quelle manière ?
De nombreux travaux ont été menés sur le thème de la représentation des systèmes de production à l’aide de graphes conceptuels. Or, les flux physiques que l’on peut rencontrer en logistique d’entrepôt sont du même type que ceux que l’on rencontre en production. La différence majeure entre les deux domaines réside dans la nature des produits stockés. Contrairement à l’entrepôt de production (« production warehouse »), dont la seule fonction est le stockage de matières premières, d’en-cours et de produits finis d’une seule entreprise, l’entrepôt logistique (« distribution warehouse ») sert à stocker des produits provenant de différentes entreprises de production et destinés à être livrés à des clients externes [Rouwenhorst et al., 2000].

D’après Dkhil [Dkhil et al., 2010], une analyse des données des gammes de production est nécessaire au début d’un projet de conception de système physique de production. Ce processus d’analyse est facilité par la définition de propriétés caractérisant les flux physiques existant entre les différentes ressources du système physique de production [Dkhil et al., 2010]. Selon Tompkins [Tompkins et al., 2003] et Zhou [Zhou et al., 2003], les propriétés utiles sont celles qui permettent l’identification de relations spécifiques entre l’ensemble des ressources. Différentes propriétés d’analyse des gammes de production ont été proposées dans la littérature, telles que les propriétés de classe, d’ordre, de puits ou de source [Zhou et al., 2003]. Se pose alors la question de savoir si les propriétés définies pour le domaine de la production peuvent être utilisées pour la conception d’un système physique dans le domaine de la logistique d’entrepôt.

Notre contribution consiste à étudier la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production. Il s’agit de déterminer si l’utilisation de ces propriétés permet d’obtenir une représentation claire, globale et détaillée des activités d’un entrepôt logistique, par le biais de représentations conceptuelles mettant en évidence la structure des flux. Au terme de cette étude, une liste de propriétés d’analyse de référence est proposée pour l’aménagement d’entrepôts logistiques.

La section 2 présente le cas d’application et la méthode utilisée pour l’étude. Un premier filtrage des propriétés est détaillé dans la troisième section. La définition des propriétés retenues proposée dans la section 4 permet l’application de certaines propriétés d’analyse aux données de flux d’un entrepôt logistique (section 5). La définition d’un référentiel de propriétés d’analyse pour l’aménagement d’un entrepôt logistique est développée dans la section 6. La section 7 constitue enfin une discussion de l’étude mettant en évidence ses limites, ainsi que les perspectives de recherche.

2 Cas d’application et méthode

L’étude a été basée sur les données de flux d’un prestataire de services logistiques. Les différentes applications proposées dans la suite de l’étude concernent un entrepôt logistique situé dans le Nord-Est de la France. Les activités étudiées sont les suivantes : réception de marchandise, expédition de palettes homogènes et hétérogènes, approvisionnement du stock de picking et préparation de commandes. L’étude a été concentrée sur des données relatives à un seul client, mais concernant l’ensemble des quatre activités précédemment citées. Le choix a été fait sur des critères d’exhaustivité des types d’activités concernés et de volumes traités, donc de chiffre d’affaires généré. La récolte des données a été effectuée dans le WMS
(Warehouse Management System) utilisé pour le client choisi. Une visualisation des flux réels par une immersion dans l’entrepôt a permis de vérifier les interprétations sur le terrain.

Quarante-quatre propriétés ont été recensées par Dkhil [Dkhil et al., 2010] dans la littérature concernant le domaine de la production et classées par types (voir tableau 1). L’étude proposée dans cet article est basée sur cette liste de quarante-quatre propriétés d’analyse. Toutes les propriétés ne sont toutefois pas étudiées en détail.

Tableau 1 : Liste des propriétés d’analyse pour l’aménagement d’ateliers de production

<table>
<thead>
<tr>
<th>Types de PA</th>
<th>Propriétés d’Analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammes de production alternatives</td>
<td></td>
</tr>
<tr>
<td>PA1</td>
<td>Flexibilité des postes de charge</td>
</tr>
<tr>
<td>PA2</td>
<td>Flexibilité des gammes de production</td>
</tr>
<tr>
<td>PA3</td>
<td>Identification de la meilleure gamme</td>
</tr>
<tr>
<td>Création / modification des gammes de production</td>
<td></td>
</tr>
<tr>
<td>PA4</td>
<td>Précédence des opérations</td>
</tr>
<tr>
<td>PA5</td>
<td>Précédence des postes de charge</td>
</tr>
<tr>
<td>Classification</td>
<td></td>
</tr>
<tr>
<td>PA6</td>
<td>Classification des postes de charge</td>
</tr>
<tr>
<td>PA7</td>
<td>Classification des produits</td>
</tr>
<tr>
<td>PA8</td>
<td>Classification produits / postes de charge</td>
</tr>
<tr>
<td>Comparaision des séquences des opérations des différents produits</td>
<td></td>
</tr>
<tr>
<td>PA9</td>
<td>Fréquence de visites des postes de charge</td>
</tr>
<tr>
<td>PA10</td>
<td>Redondance des séquences</td>
</tr>
<tr>
<td>PA11</td>
<td>Regroupement des séquences</td>
</tr>
<tr>
<td>PA12</td>
<td>Sous-séquences répétitives</td>
</tr>
<tr>
<td>PA13</td>
<td>Poste de charge répétitif</td>
</tr>
<tr>
<td>PA14</td>
<td>La plus longue séquence commune</td>
</tr>
<tr>
<td>PA15</td>
<td>La plus courte séquence commune</td>
</tr>
<tr>
<td>PA16</td>
<td>Classification des séquences</td>
</tr>
<tr>
<td>PA17</td>
<td>Poste de charge commun</td>
</tr>
<tr>
<td>PA18</td>
<td>Branches communes</td>
</tr>
<tr>
<td>PA19</td>
<td>Sous-branches communes</td>
</tr>
<tr>
<td>PA20</td>
<td>Alignement des séquences</td>
</tr>
<tr>
<td>PA21</td>
<td>Isomorphisme</td>
</tr>
<tr>
<td>Fluxlinéaire</td>
<td></td>
</tr>
<tr>
<td>PA22</td>
<td>Fréquence des mouvements en séquences</td>
</tr>
<tr>
<td>PA23</td>
<td>Fréquence des mouvements de retour</td>
</tr>
<tr>
<td>PA24</td>
<td>Fréquence des mouvements de répétition</td>
</tr>
<tr>
<td>PA25</td>
<td>Fréquence des mouvements de dépassement</td>
</tr>
<tr>
<td>Ordre séquentiel des opérations</td>
<td></td>
</tr>
<tr>
<td>PA26</td>
<td>Ordre total</td>
</tr>
<tr>
<td>PA27</td>
<td>Ordre partiel</td>
</tr>
<tr>
<td>PA28</td>
<td>Niveau</td>
</tr>
<tr>
<td>PA29</td>
<td>Squelette</td>
</tr>
<tr>
<td>Poste de charge de</td>
<td></td>
</tr>
<tr>
<td>PA30</td>
<td>Source racine</td>
</tr>
</tbody>
</table>
L'étude de la liste de propriétés d’analyse est faite suivant une méthode inspirée de celle proposée par Dkhil [Dkhil, 2001], qui permet la détermination des propriétés pertinentes pour l’aménagement d’ateliers de production. Conformément à cette méthode, un premier filtrage contextuel des données de flux permet de réduire la liste des propriétés d’analyse en supprimant celles qui ne sont pas cohérentes avec les flux de produits considérés. Au cours de cette première étape, la vérification de la présence des données nécessaires à l’étude dans le système logistique considéré a précédé l’application du filtre contextuel aux données de flux. Un second filtre est appliqué aux propriétés d’analyse restantes à ce stade de l’étude, afin de supprimer les propriétés jugées incohérentes avec le contexte d’étude considéré [Dkhil, 2001].

L’étude des propriétés retenues après ce filtrage est la seconde étape. Elle est présentée du point de vue des deux domaines comparés. Cette seconde étape a pour but d’évaluer la pertinence des différentes propriétés dans le domaine de la logistique d’entrepôt et de déterminer quelles propriétés sont utiles pour l’aménagement d’un entrepôt logistique. Pour cela, les définitions de chacune des propriétés ont été recherchées dans la littérature scientifique. Ces propriétés ayant fait l’objet d’études scientifiques dans le domaine de la production principalement, leurs définitions sont axées production, ainsi que le vocabulaire utilisé. Il a été choisi de présenter ces définitions telles qu’elles ont été trouvées dans la littérature, en respectant la formulation des différents auteurs. Chaque propriété a ensuite été redéfinie dans le domaine de la logistique d’entrepôt, avec un vocabulaire adapté. Afin de compléter leur définition, des traductions opérationnelles sont proposées pour chaque propriété d’analyse.

En complément de cette recherche du sens de chacune des propriétés étudiées, des applications concrètes ont été effectuées pour certaines d’entre elles. Des mesures ont ainsi été définies et appliquées aux données de flux et des graphes ont été construits à l’aide d’un éditeur graphique. Ces applications ont été faites dans le but de vérifier si l’application de différentes propriétés aux données de flux permet de visualiser des caractéristiques de flux cohérentes et utiles pour l’organisation des flux physiques au sein d’un entrepôt logistique. Le choix des propriétés testées a été basé sur des questions qui se posent en logistique d’entrepôt.

Une liste des propriétés de référence pour l’aménagement d’entrepôts logistiques est ensuite construite en appliquant un second filtrage contextuel sur les propriétés. L’objectif de
cette deuxième étape du filtrage contextuel est l’élimination des propriétés d’analyse jugées non utiles pour l’aménagement d’entrepôts logistiques. Deux types de propriétés sont éliminés au cours de ce dernier filtrage [Dkhil, 2001] : (i) les propriétés jugées secondaires par rapport aux objectifs visés ; (ii) les propriétés ayant des résultats d’application jugés redondants.

3 Filtrages contextuels

3.1 Filtre contextuel des données de flux

3.1.1 Définition des données de flux en logistique d’entrepôt

Avant l’étude de la transposabilité dans le domaine de la logistique d’entrepôt du premier filtrage contextuel défini pour le domaine de la production, il s’est avéré nécessaire de vérifier la présence et l’accessibilité des données de flux dans le WMS (Warehouse Management System) du prestataire logistique. Les données suivantes peuvent être récupérées pour chaque mission (correspondant à une déclinaison de l’une des quatre activités citées précédemment) et sont jugées utiles :
- Numéro de commande ;
- Date ;
- Heure de début de traitement de la mission ;
- Heure de fin de traitement de la mission ;
- Destinataire (client) ;
- Code article ;
- Désignation de l’article ;
- Nombre de palettes homogènes ;
- Quantité de palettes hétérogènes préparées ;
- Quantité de palettes hétérogènes expédiées ;
- Emplacement source ;
- Emplacement de destination ;
- Numéro de palette SSCC ;
- Numéro de palette FM.

Les emplacements source et de destination permettent de construire la trajectoire du flux physique pour chaque commande traitée. Les autres informations, quant à elles, tendent à caractériser et quantifier le flux.

3.1.2 Filtre contextuel des données de flux pour l’aménagement d’ateliers de production

Les données de flux correspondent à des relations spécifiques entre les ressources créées par le flux de produits qui transitent parmi elles [Huang, 2003]. Elles sont extraites des gammes de production et permettent l’étude des flux physiques. Les gammes de production répertorient en effet les étapes de fabrication des produits jusqu’au stockage et permettent de spécifier pour chaque produit, entre autres, les postes de charge nécessaires, le temps de production et le séquencement des opérations [Muther, 1973], [Apple, 1977], [Zhou et al., 2003]. En conception des systèmes physiques de production, les propriétés d’analyse nécessaires sont celles qui permettent d’identifier des relations spécifiques entre l’ensemble
des postes de charge [Tompkins et al., 2003], [Zhou et al., 2003]. Selon Dkhil [Dkhil, 2001], les données de flux nécessaires pour la caractérisation des flux physiques doivent par conséquent être issues de toutes les gammes de production et apporter des informations sur le flux de l’ensemble des produits entre tous les postes de charge.

La suppression des données de flux ne concernant que les données mono-produits est alors proposée en aménagement d’atelier de production par Dkhil [Dkhil, 2001]. Cela entraîne la suppression des propriétés d’analyse permettant la comparaison des séquences des opérations des différents produits.

Une de ces propriétés est par exemple la PA14 : La plus longue séquence commune. D’après Huang [Huang, 2003], une séquence commune est une séquence d’opérations consécutives commune à deux gammes de production ou plus. La PA14 s’attache ainsi à repérer la plus longue séquence commune à deux pièces, où l’on retrouve les mêmes opérations, avec les mêmes relations de précédence [Askin et al., 1998]. Cette comparaison des gammes de production permet de décrire la similarité de deux pièces [Askin et al., 1998].

Cette propriété ne permet ainsi de tirer des conclusions uniquement sur un groupe très restreint de gammes de production à la fois. Cela n’est pas cohérent avec la volonté de définir un agencement des ressources physiques performant pour toutes les gammes de production transitant par le système physique. Il en va de même pour les autres propriétés du même type : PA9 à PA21. Ces dernières ne sont ainsi pas intégrées dans le référentiel de propriétés d’analyse de référence pour l’aménagement d’ateliers de production.

3.1.3 Application du filtre contextuel aux données de flux logistiques

Le raisonnement tenu dans le domaine de la production peut être reconduit dans le domaine de la logistique d’entrepôt. De même que pour l’aménagement des systèmes de production, l’aménagement d’un entrepôt logistique se doit d’être performant pour tous les produits transitant dans l’entrepôt et pour toutes les missions qui y sont effectuées.

En logistique, on retrouve cinq gammes de base (réception de marchandise, approvisionnement du stock picking, préparation de commandes, expédition de palettes homogènes et expédition de palettes hétérogènes), déclinées en fonction des commandes des clients (références et quantités). Ces gammes ne peuvent pas être directement assimilées aux gammes de production. Contrairement à ces dernières, une même gamme logistique ne se traduit pas par les mêmes flux physiques. Deux réceptions d’un même échantillon de références peuvent ainsi être totalement différentes en termes de flux. Les emplacements de stockage étant affectés aléatoirement à la marchandise réceptionnée, une même référence peut en effet être stockée à deux endroits différents. Le schéma de base reste le même, mais les emplacements physiques mis en jeu ne sont pas les mêmes pour chaque mission. La comparaison des séquences d’opérations des différents produits n’a ainsi pas de sens en logistique d’entrepôt. La comparaison des activités, que l’entrepôt gère réellement, est plus pertinente. Cela correspond aux types d’analyse traitant de la création et de la modification des gammes et des gammes alternatives.

Deux propriétés peuvent toutefois avoir un sens et une utilité en logistique d’entrepôt : la fréquence de visite des postes de charge (PA9) et le poste de charge commun (PA17). Ces deux propriétés peuvent en effet permettre de comparer des produits et des activités, non en termes de traitement opérationnel ou de séquencement des opérations, mais sur la base des ressources utilisées. Elles seront étudiées dans la suite, dans le type d’analyse « Comparaison des ressources ».

Projet de Fin d’Etudes
Etude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production
HERR Nathalie
GM5 – ISP
Juin 2012
A l’exception de ces deux propriétés, les propriétés du type « comparaison des séquences des opérations des différents produits » ne sont pas conservées pour l’aménagement d’entrepôts logistiques.

3.2 Filtre contextuel des propriétés d’analyse

4 Définition des propriétés retenues

4.1 Type d’analyse 1 : Gammes de production alternatives

Beaucoup d’études ont été menées sur le thème des gammes de production alternatives dans le domaine de la production. L’enjeu économique de l’efficacité de la production justifie cet intérêt. En plus des définitions des notions abordées dans ce type d’analyse, plusieurs mesures des différentes propriétés ont été proposées dans la littérature pour aider à la prise de décision et à l’identification de la meilleure gamme (PA3).

4.1.1 PA1 : Flexibilité des postes de charge

- Domaine de la production

La flexibilité des postes de charge correspond à l’aptitude de ces postes à assurer différents types d’opérations dans les gammes de production, sans que le basculement n’entraîne un coût excessif [Sarker et al., 1994]. Cette notion de flexibilité réfère aux différents types d’opérations qu’une machine peut exécuter sans requérir un effort excessif pour passer d’un type d’opération à un autre [Sethi et al., 1990].

Concrètement, une bonne flexibilité des postes de charge tend à améliorer la capacité d’un système de production à faire face aux changements et aux pannes de machines [Barad, 1992]. La présence de postes de charge flexibles dans un atelier de production permet en effet la poursuite de la production, même en cas de panne ou de maintenance d’un poste de charge, ou d’une demande excédentaire d’un certain produit, par l’affectation des opérations de production à un autre poste de charge. De cette flexibilité dépendent les flexibilités des...
opérations de production, du processus global et donc de la production elle-même [Browne et al., 1984].

Plusieurs mesures ont été proposées :
- Nombre d’opérations effectuées sur un poste de charge, sans changement d’installation [Wahab et al., 2008];
- Moyenne de la somme pour chaque poste de charge de la proportion d’opérations pouvant être transférées à d’autres machines du système de production [Nagarur, 1992];
- Temps et coût de réinitialisation entre deux opérations [Taymaz, 1989];
- Nombre d’opérations qu’un poste de charge peut effectuer avec un bon rendement [Brill et al., 1989];
- Temps requis pour passer d’une opération à une autre [Chandra et al., 1992].

Domaine de la logistique d’entrepôt

La propriété correspondante dans le domaine de la logistique est la flexibilité des ressources. Elle se traduit par l’aptitude des ressources à assurer différents types d’opérations présentes dans les gammes logistiques, sans qu’un effort entraînant un coût excessif ne soit requis pour passer d’un type d’opération à un autre.

Une bonne flexibilité des ressources permet donc la poursuite des activités logistiques, même en cas d’indisponibilité d’une ressource (due à une panne, une surcharge, …), par l’affectation des opérations logistiques à une autre ressource. Elle améliore ainsi la capacité d’un système logistique à faire face aux changements et aux pannes de machines.

4.1.2 PA2 : Flexibilité des gammes de production

Domaine de la production

La flexibilité des gammes de production correspond à la capacité d’un système à produire des produits par le biais d’une variété de gammes de production différentes [Das et al., 1993]. Elle se traduit par la capacité d’un système à poursuivre la production d’un groupe de pièces donné, malgré la présence de perturbations [Bernado et al., 1992], par différentes alternatives [Sethi et al., 1990]. Cette notion de flexibilité des gammes est ainsi relative au nombre de solutions pour la construction des gammes de production, conformément aux notions de précédence des opérations et de précédence des postes de charge [Lee et al., 2004].

De même que des postes de charge flexibles, des gammes de production flexibles permettent la poursuite de la production, même en cas de panne ou de maintenance d’un poste de charge, ou d’une demande excédentaire d’un certain produit, par le suivi d’une gamme de production alternative. Selon [Barad, 1992], les gammes de production flexibles tendent alors à améliorer la capacité d’un système de production à faire face aux changements et aux pannes de machine. De cette flexibilité des gammes de production dépendent les flexibilités du volume de production et de la croissance économique de l’entreprise [Browne et al., 1984].

Diverses mesures de la flexibilité des gammes de production sont proposées :
- Nombre de chemins possibles [Chatterjee et al., 1984];
- Ratio du nombre de machines pouvant exécuter une opération sur une certaine pièce, sur le nombre total de postes de charge [Chatterjee et al., 1984];
- Nombre de pièces alternatives dans un poste de charge [Chatterjee et al., 1984];
- Nombre de trajectoires possibles à travers les postes de charge [Chatterjee et al., 1984];
- Mesure des chemins alternatifs qu’une pièce peut suivre dans un système, pour une stratégie usine-procédé donnée [Stecke et al., 1995] ;
- Pour une certaine machine : ratio du nombre d’opérations pouvant être faites sur une machine alternative, sur le nombre total d’opérations assignées à la machine [Tsubone et al., 1999].

Domaine de la logistique d’entrepôt

La propriété correspondante dans le domaine de la logistique est la flexibilité des gammes logistiques. Cette propriété correspond à la capacité du système à poursuivre ses activités logistiques malgré la présence de perturbations (indisponibilité des ressources, surcharge, …), par le biais d’une variété de gammes logistiques. Des gammes logistiques flexibles permettent la poursuite des activités logistiques, même en cas d’encombrement ou d’indisponibilité d’une ressource, par le suivi d’une gamme logistique alternative.

Des gammes logistiques flexibles permettent de plus au prestataire de services logistiques d’adapter ses activités aux besoins spécifiques de ses clients. Le prélèvement d’échantillons, les contrôles spécifiques ou le filmage des palettes en réception sont des exemples de prestations exceptionnelles.

4.1.3 PA3 : Identification de la meilleure gamme

Domaine de la production

L’identification de la meilleure gamme est un problème d’optimisation, qui consiste à déterminer l’ordre dans lequel des opérations doivent être effectuées, pour que la séquence résultante minimise les coûts, tout en satisfaissant les contraintes de précédence requises par ces opérations [Lee et al., 2001]. Selon [Borenstein, 2000], la résolution de ce problème d’optimisation requiert, pour chaque produit, l’énumération et le parcours (à l’aide d’un algorithme de recherche, par exemple) de toutes les gammes de fabrication possibles dans le système de production, ainsi que la définition de critères permettant la sélection de la meilleure solution. La meilleure solution correspond à la séquence optimale d’opérations, qui entraîne un coût de production minimum [Reddy et al., 1999].

L’identification et l’utilisation de la meilleure gamme permet de minimiser les coûts relatifs au processus, aux changements de machine, aux réglages et aux changements d’outil nécessaires à la fabrication d’un produit [Lee et al., 2004]. Le choix de la gamme donc une décision importante, qui a une influence directe sur l’efficacité de l’atelier de production ou de la cellule [Kim et al., 2004].

Domaine de la logistique d’entrepôt

De même que dans le domaine de la production, l’identification de la meilleure gamme dans le domaine de la logistique d’entrepôt se définit par l’identification de la gamme logistique optimisant un ou plusieurs critères, définis au préalable, dans un objectif global de minimisation des coûts.

En logistique d’entrepôt, la minimisation des coûts passe par l’optimisation des temps de traitement des missions, qui dépendent principalement des chemins parcourus. Selon une étude menée par l’entrepôt sur lequel se basent les résultats et conclusions présentées ici, le temps de déplacement d’une adresse à l’autre représente en effet environ 60% du temps opérationnel d’un préparateur de commande. La meilleure gamme logistique est donc celle qui minimise globalement les distances à parcourir pour traiter l’ensemble des missions.
L’ordre des opérations effectuées intervient bien sûr dans une gamme logistique, mais aussi la suite des emplacements à visiter. Couplée à une disposition cohérente des ressources, la meilleure gamme est donc celle qui comporte le moins de couples (opération, ressource). Le nombre d’opérations minimum nécessaire est fonction des ressources mises en place dans l’entrepôt et de leur technologie (technologie de manutention, par exemple).

4.2 Type d’analyse 2 : Création / modification des gammes de production

Les deux propriétés du type 2 permettent la création des gammes de production. Elles peuvent être utilisées en cours de pilotage du système de production pour analyser et modifier ces gammes.

4.2.1 PA4 : Précédence des opérations

- **Domaine de la production**

La notion de précédence des opérations traite de l’ensemble des relations de précédence existant entre deux opérations et permettant de répondre à deux questions [Borenstein, 2000] : (i) « Quelle série d’opérations peut être exécutée avant une certaine opération ? » et (ii) « Quelle opération peut être exécutée une fois qu’une série d’opérations a été effectuée ? ». Chen [Chen et al., 2003] met l’accent sur le temps que requiert une opération pour être traitée sur le type de machine sélectionné. La contrainte de précédence des opérations est à prendre en compte pour la construction des gammes de production [Lee et al., 2004] et est à lier aux choix possibles de postes de charge pour chaque opération, afin de constituer l’ensemble des gammes de production possibles [Kochikar et al., 1992], [Borenstein, 2000]. Cette contrainte limite le nombre de gammes possibles, qui atteint un maximum de n! solutions pour une séquence à n opérations sans contrainte de précédence [Lee et al., 2001]. Elle constitue un facteur important de production, car elle a un effet significatif sur les flux réguliers de matériaux dans les groupes de postes [Sudhakara Pandian et al., 2009].

La notion de précédence peut être représentée par des trajectoires liant chacune une source (cf. partie 4.7 Type d’analyse 7 : poste de charge de début et de fin de gamme de production) à un puits (cf. partie 4.7) et respectant la contrainte de précédence des opérations constituant les différentes gammes de production [Lee et al., 2004].

- **Domaine de la logistique d’entrepôt**

Les activités logistiques étant effectuées suivant des gammes, la notion de précédence des opérations existe aussi en logistique d’entrepôt. Elle peut se définir de la même façon que dans le domaine de la production. Elle correspond ainsi à l’ensemble des relations de précédence existant entre les opérations d’une gamme logistique.

La précédence des opérations est visible sur la représentation proposée pour la PA2 : Flexibilité des gammes logistiques (cf. partie 5.2).

4.2.2 PA5 : Précédence des postes de charge

- **Domaine de la production**

La propriété de précédence des postes de charge correspond à l’ordre des postes de charge à utiliser pour la fabrication d’un produit et permettant la création de la liste de toutes les
séquences possibles, du type \{PDC 1 – PDC 2 - … - PDCn\} [Borenstein, 2000]. De même que la propriété de précédençe des opérations, elle contribue à la création des gammes de production [Borenstein, 2000], [Dkhil, 2001].

- **Domaine de la logistique d’entrepôt**

 De même que la notion de précédençe des opérations, la notion de précédençe des ressources est présente en logistique d’entrepôt. Elle correspond à l’ordre des ressources nécessaires pour l’exécution d’une gamme logistique particulière. Cette propriété serait visible sur une représentation des gammes logistiques incluant la notification des ressources (cf. partie 5.2. : Flexibilité des gammes logistiques).

4.3 **Type d’analyse 3 : Classification**

Ce type d’analyse permet de tirer profit de la similarité des gammes de production, des ressources et des produits, pour former des classes : groupes de postes de charge et familles de produits [Adil et al., 1996], [Agarwal et al., 1998], [De Guio et al., 1999], [Hachicha, 2009].

4.3.1 **PA6 : Classification des postes de charge**

- **Domaine de la production**

 La classification des postes de charge est la formation de groupes spécifiques de postes de charge [Kusiak, 1987], [Rajamani et al., 1990]. Elle peut être faite en catégories basées sur leurs spécifications (technologie du poste de charge) et les méthodes opérationnelles que leur utilisation nécessite [Ayob, 2008]. Une classification peut par exemple mener à la formation de groupes de postes de charge plus ou moins autonomes (îlots ou cellules), en fonction du séquencement des opérations, des temps de processus, des volumes de production, ...

 [Mahesh et al., 2002].

- **Domaine de la logistique d’entrepôt**

 De même que dans le domaine de la production, les ressources logistiques peuvent être classifiées en groupes spécifiques. La classification des ressources correspond généralement à la définition de groupes spécifiques d’emplacements de stockage, basée sur leurs spécifications. Les emplacements de stockage sont ainsi le plus souvent classés suivant la méthodologie de classification ABC. Le prestataire de services logistiques sur lequel se base cette étude propose les classifications suivantes : (i) Si aucune contrainte de stockage spécifique n’apparaît : A = high rotation, B = medium rotation, C = low rotation ; (ii) S’il existe des contraintes de stockage : A = standard product high rotation, B = standard product medium rotation, C = standard product low rotation, T = toxic products, I = flammable products high rotation, J = flammable product medium rotation, K = flammable product low rotation. Cela se traduit opérationnellement par la réservation physique de zones d’emplacements pour chacune des classes définies précédemment.

 La propriété de classification des ressources se retrouve aussi dans la réservation d’emplacements dédiés pour l’activité de picking : le stock de picking est en effet concentré dans des zones bien précises, correspondant souvent à des allées spécifiques.

 Les ressources peuvent enfin être classifiées en fonction des activités pour lesquelles elles sont utilisées.
4.3.2 PA7 : Classification des produits

- **Domaine de la production**

 De même que la classification des postes de charge, la classification des produits vise la formation de groupes de postes de charge plus ou moins autonomes (îlots ou cellules) dans l’atelier de production. La création de lignes de production dédiées à certaines familles de produit est un exemple courant de l’application de la propriété de classification des produits. Ces derniers peuvent être classifiés suivant divers critères. Zhou [Zhou, 2003] propose par exemple de rassembler les produits utilisant certains postes de charge pour la première opération. Kim [Kim et al., 2004], quant à lui, propose de classer les produits en famille de telle sorte que les pièces dans chaque famille aient des gammes similaires et que les machines spécifiées dans les gammes soient regroupées en cellules.

- **Domaine de la logistique d’entrepôt**

 La notion de classification des produits est aussi utilisée en logistique d’entrepôt. Cette propriété peut être définie de la même façon que dans le domaine de la production, par la formation de groupes de produits (un produit correspondant à une référence stockée) basée sur leurs spécificités.

 La même classification que celle proposée pour les emplacements de stockage (classification ABC, cf. partie 4.3.1. PA6 : Classification des postes de charge) est ainsi souvent utilisée pour les produits stockés. Ces derniers peuvent aussi être classifiés par client, c’est-à-dire suivant les expéditeurs des produits réceptionnés et/ou les destinataires des produits expédiés.

 La classification des produits est généralement régulièrement révisée pour les produits faisant partie du stock de picking. Cela afin d’optimiser l’organisation de ce dernier et de l’adapter aux besoins des clients. Dans l’entrepôt étudié, un outil de simulation est par exemple utilisé pour redéfinir la classe de stockage de chaque référence du stock de picking, sur la base de l’historique des mouvements. Cet outil permet de lancer des calculs à la demande ou à une fréquence définie au préalable pour analyser les mouvements qui ont eu lieu sur un certain horizon. Cela permet d’identifier rapidement les stocks dormants sur une période donnée et de prendre des décisions concernant une éventuelle réimplantation du stock de picking. Le stock de picking peut aussi être organisé suivant le poids des produits stockés, afin de permettre une formation de palettes de préparation de commandes respectant l’intégrité des produits constituant la commande (les produits les plus lourds en dessous des plus légers). Dans l’entrepôt sur lequel se base cette étude, les références de picking sont enfin classées en deux catégories principales : les produits sucrés et les produits salés.

4.3.3 PA8 : Classification produits / postes de charge

- **Domaine de la production**

 La classification est le plus souvent faite en prenant en compte à la fois les caractéristiques des produits et celles des postes de charge. Ce regroupement simultané des familles de produits et des groupes de postes de charge correspond à une classification produits / postes de charge [Adil et al., 1993]. Les postes de charge peuvent ainsi par exemple être classifiés en fonction des familles de produits qu’ils permettent de fabriquer. Le lien entre les produits et les postes de charge étant fait par le biais des gammes de production, la formation de groupes de postes de charge respectant une certaine classification de produits est définie sur la base de...
la similarité de ces gammes [Dkhil, 2001]. Les produits sont ainsi classifiés en familles, puis les groupes de postes de charge correspondant à cette classification sont identifiés [Choobineh, 1988].

- **Domaine de la logistique d’entrepôt**

La combinaison des deux propriétés de classification est aussi utilisée en logistique pour définir des zones de stockage dédiées à des classes de produit. La notion de classification produits / ressources se définit alors dans le domaine de la logistique d’entrepôt comme étant un regroupement simultané des familles de produits et des groupes de ressources basé sur les propriétés de ces deux éléments.

La classification simultanée des produits et des emplacements de stockage permet par exemple la définition complète d’une implantation de stock, optimisant à la fois le positionnement des références les unes par rapport aux autres et leur positionnement physique dans l’entrepôt.

4.4 Type d’analyse 4 : Comparaison des ressources

Les deux propriétés étudiées dans ce type d’analyse correspondent aux propriétés conservées suite au premier filtrage contextuel des données de flux. Contrairement au domaine de la production, où elles ne sont appliquées qu’aux produits fabriqués, elles sont étudiées dans le domaine de la logistique d’entrepôt par le biais de leur application aux produits stockés, mais aussi aux activités logistiques elles-mêmes.

4.4.1 PA9 : Fréquence de visite des postes de charge

- **Domaine de la production**

La fréquence de visite des postes de charge est évoquée par plusieurs auteurs : Irani [Irani et al., 2000a et b], Singleton [Singleton, 1962], Kim [Kim et al., 2004], Askin [Askin et al., 1998], Zhou [Zhou et al., 2003] et Huang [Huang, 2003]. Cette propriété se définit par la fréquence à laquelle un poste de charge est utilisé pour fabriquer un produit. Elle correspond à un paramètre pris en compte lors de la formation de cellules [Huang, 2003].

- **Domaine de la logistique d’entrepôt**

La fréquence de visite des postes de charge peut être transposée en logistique d’entrepôt par la fréquence d’utilisation des ressources. Appliquée aux emplacements de stockage, cette propriété peut par exemple permettre une visualisation de la rotation du stock ou des volumes. La connaissance de ces éléments peut s’avérer utile pour prendre des décisions concernant les moyens de stockage (stockage manuel ou mécanisé, …), ainsi que les moyens de manutention et de préparation de commandes.

4.4.2 PA17 : Poste de charge commun

- **Domaine de la production**

La notion de poste de charge commun est évoquée par les mêmes auteurs cités pour la propriété de fréquence de visite des postes de charge ([Irani et al., 2000a et b], [Singleton, 1962], [Kim et al., 2004], [Askin et al., 1998], [Zhou et al., 2003] et [Huang, 2003]). Cette notion fait référence aux postes de charge présents dans au moins deux gammes de production.
différentes. Zhou [Zhou et al., 2003] propose de positionner un poste de charge commun à
deux gammes de telle sorte que les flux de produits des deux gammes soient tous les deux
optimaux sans qu’une duplication de poste ne soit nécessaire. Il convient ainsi de placer un tel
poste à un endroit unique dans l’atelier de production et accessible par les deux références
fabriquées sur ce poste de charge.

- Domaine de la logistique d’entrepôt

En logistique d’entrepôt, la propriété de ressource commune peut être tirée de celle définie
pour le domaine de la production, en l’appliquant aux activités et non aux produits transitant
par le système physique. Cette notion réfère alors aux ressources utilisées par au moins deux
types d’activités différents. Elle peut aussi être appliquée au sein d’une seule activité, pour
l’identification des ressources communes à plusieurs missions de même type.

Le placement physique des ressources dans l’entrepôt se doit d’être cohérent avec les lieux
d’exécution des différentes activités ou missions et avec leurs flux physiques respectifs. Les
ressources communes à plusieurs activités ou missions trouvent ainsi leur positionnement
optimal à un point de croisement des flux physiques entraînés par le groupe d’activités ou de
missions étudié.

4.5 Type d’analyse 5 : Flux linéaire

- Domaine de la production

Ce type d’analyse regroupe quatre propriétés concernant le type de déplacement des
produits (cf. figure 9) et permettant l’analyse de flux linéaires. Ces propriétés d’analyse
permettent l’étude des fréquences des différents types de déplacement de produits entre les
postes de charge [Sarker et al., 1998], [Sarker et al., 2000] et [Ho et al., 1993].

![Figure 9 : Types de déplacement entre les postes de charge [Dkhil, 2001]](image)

4.5.1 PA22 : Fréquence des mouvements en séquence

Un mouvement en séquence est un déplacement d’une pièce d’une machine à une machine
voisine, conformément aux directions de flux possibles [Ho et al., 1993]. La fréquence des
mouvements en séquence correspond alors la fréquence du flux de produits entre les PDC
suivant un ordre séquentiel [Dkhil, 2001].

4.5.2 PA23 : Fréquence des mouvements de retour

Un mouvement de retour arrière est défini comme un mouvement qui ne respecte pas la
direction permise par la trajectoire de circulation [Ho et al., 1993]. La fréquence des
mouvements de retour représente alors la fréquence du déplacement de produits à contre-sens
du flux principal [Dkhil, 2001].
4.5.3 PA24 : Fréquence des mouvements de répétition

Les pièces requérant un mouvement de répétition restent à la même machine pour deux opérations successives [Ho et al., 1993]. La fréquence des mouvements de répétition correspond donc à la fréquence des opérations répétitives sur le même poste de charge [Dkhil, 2001].

4.5.4 PA25 : Fréquence des mouvements de dépassement

Un mouvement de dépassement déplace une pièce d'une machine à une autre, qui n'est pas la voisine de la première, sans violer la direction du flux [Ho et al., 1993]. La fréquence des mouvements de dépassement concerne donc les sauts dans la séquence de déplacement de produits qui n’impactent pas la direction principale du flux [Dkhil, 2001].

* Domaine de la logistique d’entrepôt

Les déplacements de produit effectués entre les différents emplacements dans un entrepôt logistique sont comparables aux déplacements de produits effectués entre les postes de charge dans un atelier de production. Les quatre types de déplacement définis pour le domaine de la production se retrouvent donc en logistique d’entrepôt. Un mouvement en séquence correspond par exemple au déplacement d’une palette d’une zone d’attente à un quai de chargement ou du déplacement d’un préparateur de commande d’un emplacement de picking au suivant (cf. partie 5.6. PA26 : Ordre total). L’activité de réception de marchandise telle qu’elle est définie actuellement comporte quant à elle de nombreux mouvements de retours-arrières, entre les emplacements de stockage et le quai de déchargement (cf. partie 5.6. Application de la PA26 : Ordre total). Des mouvements de répétition sont effectués sur la filmeuse, où une coiffe est généralement déposée sur la palette avant que celle-ci soit filmée. Une mission de picking peut enfin comporter des mouvements de dépassement, quand les articles à prélever ne sont pas stockés directement les uns à côté des autres (cf. partie 5.7. Application de la PA28 : Niveau).

4.6 Type d’analyse 6 : Ordre séquentiel des opérations

Ce type d’analyse vise l’identification des relations spécifiques entre l'ensemble des postes de charge du système.

* Domaine de la production

4.6.1 PA26 : Ordre total

La définition d’une relation d’ordre entre les postes de charge permet de détecter les quatre types de déplacement pouvant exister entre les ressources [Dkhil et al., 2010], à savoir : les mouvements en séquence (flux séquentiel entre les postes), les mouvements de dépassement (sauts dans les séquences de déplacement), les mouvements de retour arrière (déplacements de produits à contre-sens du flux principal) et les mouvements de répétition (opérations répétitives sur un même poste). L’identification de ces types de mouvement permet d’optimiser la circulation des produits au travers des postes de charge en déterminant un sens dominant de flux de produits [Zhou et al., 1996] représenté par un ordre des postes de charge. La minimisation des retours-arrières qui en résulte simplifie la circulation des produits. Selon

4.6.2 PA27 : Ordre partiel

La notion d’ordre partiel dérive de la propriété d’ordre total. Elle vise les mêmes résultats que celle-ci, mais est plus souple. Alors que l’application de la propriété d’ordre total à un flux ne donne qu’une seule solution d’ordre des ressources, la propriété d’ordre partiel renvoie plusieurs résultats possibles. Un résultat correspond à un des ordres possibles des postes de charge évitant les mouvements de retour arrière [Dkhil, 2001]. Elle laisse donc une certaine liberté dans l’ordonnancement des ressources.

- Domaine de la logistique d’entrepôt

Les flux logistiques étant orientés, la propriété d’ordre peut leur être appliquée. De même que pour les flux de production, la définition d’un ordre au sein d’un flux logistique permet de déterminer un sens dominant de flux. En logistique d’entrepôt, ce flux ne concerne toutefois pas uniquement les flux de produits, mais prend aussi en compte les flux de personnes, qui représentent une grande partie des flux logistiques. L’identification des quatre types de déplacements par l’application de la propriété d’ordre total permet à première vue de détecter les trajectoires pouvant être améliorées.

4.6.3 PA28 : Niveau

- Domaine de la production

La définition de niveaux de postes permet de rassembler les postes de charge ayant le même prédécesseur, en les représentant dans un même bloc [Kahn, 1962]. Une représentation par niveaux de postes de charge par lesquels transiennent les flux correspond donc à la liste ordonnée de ces postes respectant les ordres définis dans les gammes de fabrication considérées. Une telle représentation permet de mettre en évidence un ordre séquentiel de l’ensemble des opérations. Un nombre de niveaux élevé signifie que la relation d’adjacence entre les postes de charge est proche d’un ordre total [Kahn, 1962].

Deux types de ressources peuvent être identifiés facilement et rapidement sur un graphe de niveaux : les sources et les puits (cf. partie 4.7. Type d’analyse 7 : Poste de charge de début et de fin de gamme), placés respectivement en tête et à la fin du graphe de niveaux.

- Domaine de la logistique d’entrepôt

Une représentation par niveaux des différents emplacements par lesquels transiennent les flux physiques au sein d’un entrepôt logistique est possible et d’autant plus intéressante qu’elle permet l’identification des ressources de types source et puits.

Cette propriété de niveau semble particulièrement intéressante pour la représentation des missions de préparation de commandes, notamment sur la partie prélèvement d’articles...
(picking). L’identification des sources et des puits au sein du stock de picking permise par une telle représentation peut en effet constituer une base pour l’implantation physique des ressources de type emplacement utilisées en amont et en aval du picking.

4.6.4 PA29 : Squelette

❖ Domaine de la production

Le squelette d’un flux correspond à la représentation des postes de charges et des liens qui existent entre eux, sur laquelle ont été supprimés les liens transitifs (représentation des mouvements en séquence). Cette suppression de liens n’altère pas la compréhension de la structure du flux [Dkhil, 2001]. La représentation du squelette d’un flux est d’autant plus claire que la proportion d’arcs transitifs est élevée. Cela signifie en effet qu’il y a peu de retours-arrière et de dépassements, ce qui simplifie les relations entre les postes de charge [Zhou et al., 1996].

❖ Domaine de la logistique d’entrepôt

La propriété de squelette peut être définie pour l’aménagement d’entrepôts logistiques comme étant la représentation des ressources et des liens qui les lient, à l’exception des liens transitifs. L’application de la propriété de squelette, associée à la suppression des liens correspondant à des mouvements de dépassement permet de ne représenter que les mouvements de retour-arrière. Cela rend alors possible la mise en évidence d’une partie des mouvements à vide, qui correspondent à de la non-valeur-ajoutée en logistique.

4.7 Type d’analyse 7 : Poste de charge de début et de fin de gamme de production

Ce type d’analyse vise l’identification de certains postes de charge spécifiques.

❖ Domaine de la production

Les postes de charge de début et de fin de gamme sont respectivement nommés source et puits. Une source correspond ainsi à un poste de charge utilisé pour la première opération d’une gamme de production. A l’inverse, un puits correspond au dernier poste de charge utilisé. Des déclinaisons de ces deux notions ont été définies dans la littérature et ont donné lieu à la définition de six propriétés distinctes.

4.7.1 PA30 : Source racine

Une source racine correspond à un poste de charge toujours utilisé en première opération de gamme, pour tous les produits fabriqués au sein du système physique de production [Bard et al., 1989].

4.7.2 PA31 : Source totale

Un poste de charge est une source totale s’il est toujours utilisé en première opération de gamme, pour un nombre limité de produits [Dkhil, 2001].
4.7.3 PA32 : Source partielle

Une source partielle est un poste de charge parfois utilisé lors de la première opération, pour un nombre limité de produits [Dkhil, 2001].

4.7.4 PA33 : Puits racine

Un puits racine correspond à un poste de charge toujours utilisé pour la dernière opération de gamme, pour tous les produits [Bard et al., 1989].

4.7.5 PA34 : Puits total

Un poste de charge est un puits total s’il est toujours utilisé en dernière opération de gamme, pour un nombre limité de produits [Dkhil, 2001].

4.7.6 PA35 : Puits partiel

Un poste de charge est dit puits partiel s’il est parfois utilisé en dernière opération de gamme, pour un nombre limité de produits [Dkhil, 2001].

La mise en évidence de ces ressources de début et de fin de gamme est utilisée dans le domaine de la production pour déterminer le meilleur emplacement des stocks de matière première, d’en-cours et de produits finis. Les propriétés de source et de puits peuvent aussi être utilisées pour déterminer les emplacements des postes de charge eux-mêmes. Un poste constituant une source totale est ainsi à rapprocher du stock amont. La même conclusion est valable pour une source partielle, avec toutefois moins d’importance (rapprochement à effectuer si possible). Le même raisonnement peut être conduit pour le positionnement des postes puits au plus proche du magasin aval.

- Domaine de la logistique d’entrepôt

Les mêmes définitions de chacune de ces six propriétés d’analyse peuvent être transférées aux ressources logistiques. Une source est ainsi une ressource utilisée pour la première opération de la gamme alors qu’un puits est une ressource utilisée pour la dernière opération. L’utilité de la connaissance de deux types généraux de ressources est développée dans l’application de la propriété de niveau (cf. partie 5.8. Application de la PA28 : Niveau).

4.8 Type d’analyse 8 : Connexité

4.8.1 PA38 : Composant fortement connexe (CFC)

- Domaine de la production

Dans un graphe orienté, un groupe de postes de charge forme un composant fortement connexe si pour toute paire de postes de charge (i, j), il existe un chemin de i à j et inversement [Daita et al., 2000]. L’application de cette propriété d’analyse permet la partition de l’ensemble des postes de charge en groupes indissociables, chacun ayant une forte connectivité [Dkhil, 2001]. La figure 10 représente un exemple de partition de postes en trois composants fortement connexes.
Domaine de la logistique d’entrepôt

Un groupe de ressources peut aussi former un composant fortement connexe si pour toute paire de ressources (i, j), il existe un chemin de i à j et inversement. De même que dans le domaine de la production, l’identification de composants fortement connexes en logistique d’entrepôt permet d’identifier des groupes de ressources indissociables. La partition des ressources étant déjà permise par les propriétés de classification (cf. partie 4.3. Type d’analyse 3 : Classification) et la propriété de ressource commune (cf. partie 4.4.2. PA17 : Poste de charge commun), la propriété de composant fortement connexe ne semble rien ajouter à l'étude des données de flux logistiques.

4.8.2 PA39 : Point d’articulation

Domaine de la production

Dans un graphe représentant les postes de charge et les liens existant entre eux, un poste de charge est un point d’articulation si sa suppression scinde le graphe en plusieurs sous-graphe disjoint [Dkhil, 2001]. L’identification de postes de charge de type point d’articulation permet la partition de l’ensemble des postes de charge en groupes indépendants.

Domaine de la logistique d’entrepôt

De même que dans le domaine de la production, une ressource logistique est un point d’articulation si sa suppression d’un graphe représentant l’ensemble des ressources ainsi que leurs liens scinde ce graphe en plusieurs sous-graphe disjoints. Les activités de réception et d’expédition étant composées de mouvements d’allers-retours (cf. figure 30 et figure 31, partie 5.7. Application de la PA26 : Ordre total), elles ne comportent aucun point d’articulation. L’activité de préparation de commandes, quant à elle, comporte de nombreux points d’articulation. Toutes les ressources communes à deux missions de préparation de commandes, identifiées sur la figure 19 (cf. partie 5.8. Application de la PA28 : Niveau), en sont des exemples. Cette notion étant soit absente au sein des activités, soit trop représentée, elle ne permet pas de tirer de conclusions probantes sur les différentes activités logistiques et leurs liens.
4.8.3 PA41 : Circuit

- **Domaine de la production**

Un circuit est un trajet de flux physiques correspondant à un ou plusieurs produits et reliant un certain nombre de postes de charge. De même que la propriété d’ordre total (cf. partie 4.6.1. PA26 : Ordre total), une application concrète de la propriété circuit est la formation de lignes de production. A chaque circuit identifié correspond ainsi idéalement une ligne de production.

- **Domaine de la logistique d’entrepôt**

On peut définir un circuit dans le domaine de la logistique d’entrepôt comme étant un ensemble de flux physiques correspondant à une ou plusieurs activités logistiques et reliant un certain nombre de ressources. L’application de cette propriété donnant le même résultat que celle de l’ordre total, elle n’est pas étudiée en détails.

4.8.4 PA42 : Pont

- **Domaine de la production**

Un pont correspond à un lien dont la suppression déconnecte le graphe représentant l’ensemble des postes de charge étudiés et leurs liens et entraîne la formation de sous-graphes disjoints [Tarjan, 1974]. De même que pour les points d’articulation, l’identification de liens de type pont permet la partition de l’ensemble des postes de charge en groupes indépendants.

- **Domaine de la logistique d’entrepôt**

La définition de la propriété de pont peut être transposée dans le domaine de la logistique d’entrepôt en remplaçant la notion de poste de charge par celle de ressource. L’application de la propriété de pont amenant aux mêmes résultats que celle de la propriété de point d’articulation, elle n’est pas approfondie.

Tableau 2: Liste des propriétés d’analyse renommées pour le domaine de la logistique d’entrepôt

<table>
<thead>
<tr>
<th>Types de PA</th>
<th>Propriétés d’Analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammes logistiques alternatives</td>
<td>PA1 Flexibilité des ressources</td>
</tr>
<tr>
<td></td>
<td>PA2 Flexibilité des gammes logistiques</td>
</tr>
<tr>
<td></td>
<td>PA3 Identification de la meilleure gamme</td>
</tr>
<tr>
<td>Création / modification des gammes logistiques</td>
<td>PA4 Précédence des opérations</td>
</tr>
<tr>
<td></td>
<td>PA5 Précédence des ressources</td>
</tr>
<tr>
<td>Classification</td>
<td>PA6 Classification des ressources</td>
</tr>
<tr>
<td></td>
<td>PA7 Classification des produits</td>
</tr>
<tr>
<td></td>
<td>PA8 Classification produits / ressources</td>
</tr>
<tr>
<td>Comparaison des séquences des opérations des différents produits</td>
<td>PA9 Fréquence de visites des ressources</td>
</tr>
<tr>
<td></td>
<td>PA17 Resource commune</td>
</tr>
</tbody>
</table>
5 Applications des propriétés d’analyse aux données de flux

5.1 Application de la PA1 : Flexibilité des ressources

La propriété de flexibilité des postes de charge proposée dans le domaine de la production ne prend en compte qu’une des nombreuses ressources du système de production. Dans le domaine de la logistique d’entrepôt, nous proposons d’élargir cette notion à quatre types différents de ressources. Les types de ressources utilisées en entrepôt pour les activités logistiques sont les suivants :

- Les emplacements, qui correspondent aux différents lieux physiques où sont effectuées des opérations logistiques, conformément aux gammes logistiques ;
- Les engins de manutention, utilisés pour déplacer les marchandises (palettes, colis, …) ;
- Les machines support, qui sont utilisées pour effectuer des opérations de customisation sur les produits et pour le suivi des opérations logistiques ;
- Les employés, qui effectuent les différentes opérations.

Les ressources utilisées dans le cas d’étude pour effectuer les différentes activités logistiques sont recensées et classées par type dans le tableau en annexe (cf. Annexe 2 : Etude de la flexibilité des ressources). Ce dernier présente aussi trois mesures proposées pour évaluer la flexibilité des ressources d’un entrepôt logistique :

- Nombre d’opérations différentes pouvant être effectuées avec la ressource, avec un bon rendement et sans changement d’installation ou d’organisation ;
- Nombre de ressources différentes pouvant être utilisées à la place de la ressource (nombre de remplaçants possibles) ;
- Nombre d’opérations pouvant être transférées à d’autres ressources du système logistique.
A chacune de ces mesures a été associé un pourcentage :
- (nombre d’opérations pouvant être effectuées avec la ressource) x 100 / (nombre total d’opérations pouvant être effectuées avec toutes les ressources du système) ;
- (nombre de remplaçants possibles) x 100 / (nombre total de ressources du système) ;
- (nombre d’opérations pouvant être transférées à d’autres ressources du système) x 100 / (nombre d’opérations différentes pouvant être effectuées avec la ressource, avec un bon rendement et sans changement d’installation ou d’organisation).

L’étude complète de la flexibilité des ressources est disponible en Annexe 2 : Etude de la flexibilité des ressources. Le tableau 3 correspond à un extrait de cette étude.

Tableau 3 : Extrait de l’étude de la flexibilité des ressources

<table>
<thead>
<tr>
<th>Type de ressource</th>
<th>Ressource</th>
<th>Mesure 1 : nombre d’opérations %</th>
<th>Mesure 2 : nombre de remplaçants possibles %</th>
<th>Mesure 3 : transférabilité des opérations %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emplacements</td>
<td>Emplacement Palette Rack (EPR)</td>
<td>2 11%</td>
<td>1 4%</td>
<td>2 100%</td>
</tr>
<tr>
<td></td>
<td>Emplacement provisoire</td>
<td>4 21%</td>
<td>2 9%</td>
<td>4 100%</td>
</tr>
<tr>
<td></td>
<td>Allée picking</td>
<td>5 26%</td>
<td>0 0%</td>
<td>2 40%</td>
</tr>
<tr>
<td></td>
<td>Zone attente</td>
<td>6 32%</td>
<td>0 0%</td>
<td>6 100%</td>
</tr>
<tr>
<td></td>
<td>Emplacement filmeuse</td>
<td>4 21%</td>
<td>1 4%</td>
<td>4 100%</td>
</tr>
<tr>
<td></td>
<td>Emplacement imprimante</td>
<td>1 5%</td>
<td>0 ou 1 0% ou 100%</td>
<td>0 ou 1 0% ou 100%</td>
</tr>
<tr>
<td></td>
<td>Quai</td>
<td>8 42%</td>
<td>2 9%</td>
<td>5 63%</td>
</tr>
<tr>
<td>Machines support</td>
<td>Filmuse</td>
<td>4 21%</td>
<td>1 4%</td>
<td>4 100%</td>
</tr>
<tr>
<td></td>
<td>Imprimante</td>
<td>1 5%</td>
<td>0 0%</td>
<td>0 0%</td>
</tr>
<tr>
<td></td>
<td>Scanne</td>
<td>2 11%</td>
<td>1 4%</td>
<td>2 100%</td>
</tr>
<tr>
<td>Engins de manutention</td>
<td>Moulinette simple fourche</td>
<td>4 21%</td>
<td>2 9%</td>
<td>4 100%</td>
</tr>
<tr>
<td></td>
<td>Préparateur de commande simple fourche</td>
<td>5 26%</td>
<td>5 22%</td>
<td>5 100%</td>
</tr>
<tr>
<td></td>
<td>Elévateur en porte-à-faux à prise frontale</td>
<td>6 32%</td>
<td>2 9%</td>
<td>6 100%</td>
</tr>
<tr>
<td></td>
<td>Elévateur à mât rétractable</td>
<td>6 32%</td>
<td>2 9%</td>
<td>6 100%</td>
</tr>
<tr>
<td></td>
<td>Elévateur en porte-à-faux tri-directionnel</td>
<td>6 32%</td>
<td>0 0%</td>
<td>4 67%</td>
</tr>
<tr>
<td>Employés</td>
<td>Chef d’équipe logistique</td>
<td>6 29%</td>
<td>3 23%</td>
<td>6 100%</td>
</tr>
<tr>
<td></td>
<td>Cariste en prestations logistiques</td>
<td>9 43%</td>
<td>4 31%</td>
<td>9 100%</td>
</tr>
</tbody>
</table>

L’analyse des ressources par la propriété de flexibilité des ressources nous permet de faire les remarques suivantes :
- Un quai de chargement/déchargement ne peut pas être remplacé par un autre emplacement, ou même par un groupe d’autres emplacements ;
- Une imprimante n’est pas du tout flexible, de même qu’un élévateur en porte-à-faux tri-directionnel ;
- Un certain nombre d’opérations effectuées dans une allée de picking ne peut pas être effectué ailleurs.
La propriété de flexibilité des ressources s’applique donc bien aux ressources d’un entrepôt logistique. La connaissance, consciente ou non, de la flexibilité des ressources est bien souvent acquise par les personnes pilotes du système logistique. Elle est par exemple utilisée pour faire face à des imprévus tels qu’une panne entraînant l’indisponibilité d’un engin de manutention, ou un pic dans la demande des clients entraînant une surcharge et un besoin de plus de main-d’œuvre.

5.2 Application de la PA2 : Flexibilité des gammes logistiques

<p>| Tableau 4 : Légende des abréviations utilisées dans les arbres des opérations |
|-----------------|-----------------|-----------------|
| Activité | Opération | Emplacement |
| Pilotage | G1 Récupérer mission | Poste de pilotage |
| Réception | R1 Décharger palette | Quai |
| | R2 Contrôler commande | Quai |
| | R3 Imprimer étiquettes | Imprimante |
| | R4 Étiqueter palette | Quai |
| | R5 Saisir palette | Quai |
| | R6 Déposer palette | Emplacement provisoire |
| | R7 Saisir palette | Emplacement provisoire |
| | R8 Gerber palette | Emplacement de stockage |
| Approvisionnement du stock picking | A1 Dégerber palette | Emplacement de stockage |
| | A2 Déposer palette | Emplacement provisoire |
| | A3 Saisir palette | Emplacement provisoire |
| | A4 Déposer palette | Allée picking |
| | A5 Saisir palette stock picking | Emplacement picking |
| | A6 Déposer palette stock picking | Allée picking |
| | A7 Déplacer produits | Allée picking |
| | A8 Saisir palette pleine | Allée picking |
| | A9 Déposer palette pleine | Emplacement picking |
| | A10 Saisir palette vide | Allée picking |
| | A11 Déposer palette vide | Zone palettes vides |
| Préparation de commandes | P1 Saisir palette vide | Zone palettes vides |
| | P2 Positionner palette picking | Allée picking |
| | P3 Saisir produit | Emplacement picking |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>Déposer produit</td>
<td>Allée picking</td>
</tr>
<tr>
<td>P5</td>
<td>Déposer palette picking</td>
<td>Allée picking</td>
</tr>
<tr>
<td>P6</td>
<td>Saisir palette vide</td>
<td>Zone palettes vides</td>
</tr>
<tr>
<td>P7</td>
<td>Déposer palette vide de sur palette picking</td>
<td>Allée picking</td>
</tr>
<tr>
<td>P8</td>
<td>Saisir palette picking</td>
<td>Allée picking</td>
</tr>
<tr>
<td>P9</td>
<td>Déposer palette picking</td>
<td>Zone attente</td>
</tr>
<tr>
<td>P10</td>
<td>Saisir palette picking</td>
<td>Zone attente</td>
</tr>
<tr>
<td>P11</td>
<td>Déposer palette picking</td>
<td>Filmuse</td>
</tr>
<tr>
<td>P12</td>
<td>Déposer coiffe</td>
<td>Filmuse</td>
</tr>
<tr>
<td>P13</td>
<td>Filmer palette</td>
<td>Filmuse</td>
</tr>
<tr>
<td>P14</td>
<td>Saisir palette</td>
<td>Filmuse</td>
</tr>
<tr>
<td>P15</td>
<td>Déposer palette</td>
<td>Zone attente</td>
</tr>
<tr>
<td>P16</td>
<td>Sceller palette</td>
<td>Zone attente</td>
</tr>
<tr>
<td>P17</td>
<td>Imprimer étiquettes</td>
<td>Imprimante</td>
</tr>
<tr>
<td>P18</td>
<td>Étiqueter palette</td>
<td>Zone attente</td>
</tr>
<tr>
<td>E1</td>
<td>Dégerber palette</td>
<td>Emplacement de stockage</td>
</tr>
<tr>
<td>E2</td>
<td>Déposer palette</td>
<td>Zone attente</td>
</tr>
<tr>
<td>E3</td>
<td>Imprimer étiquettes</td>
<td>Imprimante</td>
</tr>
<tr>
<td>E4</td>
<td>Étiqueter palette</td>
<td>Zone attente</td>
</tr>
<tr>
<td>E5</td>
<td>Saisir palette</td>
<td>Zone attente</td>
</tr>
<tr>
<td>E6</td>
<td>Déposer palette</td>
<td>Quai</td>
</tr>
<tr>
<td>E7</td>
<td>Contrôler commande</td>
<td>Quai</td>
</tr>
<tr>
<td>E8</td>
<td>Charger palette</td>
<td>Quai</td>
</tr>
</tbody>
</table>

Figure 11 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Réception
Figure 12 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Approvisionnement
Figure 13 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Préparation de commandes

Figure 14 : Représentation conceptuelle de la flexibilité des gammes logistiques _ Expédition
On voit que différentes possibilités existent pour effectuer chacune des activités logistiques. La flexibilité des gammes logistiques n’est étudiée ici que du point de vue des opérations à effectuer et de l’ordre dans lequel elles sont effectuées. Des arbres bien plus complexes pourraient être tracés en prenant en compte pour chaque opération tous les moyens de manutention possibles et tous les employés pouvant effectuer l’opération.

5.3 Application de la PA3 : Identification de la meilleure gamme

L’identification de la meilleure gamme logistique peut se faire sur la représentation de la flexibilité des gammes logistiques. Les gammes logistiques proposées sur cet arbre étant toutes possibles opérationnellement, la meilleure gamme est celle qui comporte le moins de couples (opération, ressource), tout en respectant les contraintes d’exploitation de l’entrepôt. Sur la base de l’application précédente, les meilleures gammes de chaque activité sont mises en évidence sur les figures 15, 16 et 17.

![Diagramme de gammes logistiques](image-url)
Projet de Fin d’Etudes
Etude de la transférabilité, pour l’aménagement d’entrepôts logistiques, de propriétés utilisées pour l’aménagement des systèmes de production
HERR Nathalie
GM5 – ISP
Juin 2012
La prise en compte de l’équipement présent dans l’entrepôt (engins de manutention, ...) est nécessaire avant le choix de la meilleure gamme. Les deux meilleures gammes représentées pour l’activité d’expédition correspondent à une expédition de palettes homogènes (palettes préllevées directement dans le stock) et à une expédition de palettes hétérogènes (palettes de préparation de commandes).

5.4 Application de la PA6 : Classification des ressources

La question qui se pose est la suivante : l’application de la propriété de classification des ressources aux emplacements de stockage permet-elle d’apporter des éléments pour le choix de la stratégie de manutention de palettes en entrepôt logistique ? Deux stratégies peuvent en effet être adoptées : (i) traiter les réceptions et les expéditions en une fois, pour optimiser le temps de traitement de chaque mission, (ii) rassembler le traitement d’une réception et d’une expédition, pour optimiser les déplacements (minimiser les déplacements à vide). Afin de prendre une décision éclairée, il s’agit de déterminer si les emplacements de stockage concernés par les missions de réception et d’expédition appartiennent à des zones communes. La figure 18 montre une proposition de classification par zones, où chaque zone correspond à une surface au sol limitée. Les mouvements effectués à l’intérieur de chacune de ces zones n’excèdent ainsi pas une certaine longueur.

L’application de la propriété de classification à une mission de réception et à une mission d’expédition est représentée conceptuellement sur la figure 19. Elle permet de mettre en évidence trois groupes d’emplacements faisant partie d’une même zone, sur la base de la classification par zones décrite sur la figure 18.

Pour les deux missions représentées, le traitement de la réception et de l’expédition en simultané permet de diminuer la distance globale parcourue et donc le temps total de traitement des missions. La propriété de classification est donc non seulement applicable aux flux d’un entrepôt logistique, mais elle peut aussi apporter une aide au pilotage des activités logistiques.
La propriété de classification peut aussi être appliquée à des missions de préparation de commandes et apporter une aide à la décision pour le choix de la stratégie à adopter. Les deux stratégies présentées pour les activités de réception et d’expédition peuvent en effet être transposées pour l’activité de préparation de commandes. Une optimisation de l’activité de préparation de commandes serait possible par la mise en place de prélèvements multicommandes, qui réduirait le cycle global de préparation. Ce mode de préparation est appelé « préparation en rafale ». La question qui se pose est alors la suivante : comment regrouper les commandes client pour créer des ordres de préparation comprenant plusieurs commandes à traiter simultanément ? La propriété de classification appliquée à plusieurs missions de préparation de commandes classiques (picking à la commande) permet de détecter des groupes de commandes nécessitant des prélèvements d’articles dans des mêmes zones. La formation de ces groupes est basée sur la similarité des listes d’articles commandés et sur les positions physiques de ces articles au sein du stock de picking.

5.5 Application de la PA9 : Fréquence d’utilisation des ressources

Une application possible de cette propriété est la vérification du bon paramétrage de la classification ABC utilisée pour la définition des zones de stockage. La détection d’un grand nombre d’emplacements de type A (forte rotation) ayant une fréquence de visite faible serait par exemple incohérente. Une mauvaise performance de l’affectation automatique d’emplacements de stockage aux produits réceptionnés pourrait être une autre cause de cette incohérence.

Une mise en application est proposée sur la figure 20 pour la vérification du bon paramétrage du stockage des références de picking. Sur cette figure sont représentés les emplacements de stockage de deux allées de picking. Un code couleur est appliqué à chaque emplacement en fonction de la date de l’entrée en stock de la référence qui lui correspond.
Une telle représentation peut permettre la détection des références mal positionnées dans le stock picking. La présence de références ayant été réapprovisionnées depuis plus de dix mois en arrière (emplacements rouges sur la figure 20) dans les zones A et B est incohérente avec l’application de la classification ABC du stockage. On note de plus la présence de références ayant été réapprovisionnées dans un délai court dans les zones de stockage B et C. Deux interprétations sont possibles dans ce cas-là : (i) les références correspondantes sont mal placées ; (ii) les réapprovisionnements ont été effectués durant la période observée, mais les références sont bien classifiées C.

La représentation des dates de réapprovisionnement seules ne suffit pas. Afin d’avoir une vision réaliste de durée de stockage de chaque référence dans les trois zones, il s’agit de prendre en compte la fréquence d’approvisionnement. La figure 21 propose une représentation de la durée de stockage de chaque référence entre deux approvisionnements.
On peut voir sur cette seconde représentation conceptuelle que les références étant stockées moins de cinq mois entre deux approvisionnements sont bien situées dans la zone A. On voit de plus que certaines références stockées dans les zones A et B ont été peu utilisées. Leur déplacement en zone C serait à envisager. On remarque enfin qu’un grand nombre de références situées dans les zones B et C et identifiés comme étant entrés en stock dans un délai court sur la figure 20 étaient dans le cas (ii). La prise en compte de la fréquence d’approvisionnement des références permet donc d’avoir une vision plus réaliste de la fréquence d’utilisation des emplacements de stockage dédiés au picking. Une représentation montrant que les références restant en stock plus longtemps sont stockées au fond des racks et que celles ayant les plus fortes rotations sont stockées à l’entrée des racks de picking montre (i) que la classification ABC du stock picking est bien paramétrée et (ii) que cette classification est bien respectée lors du placement des références dans le stock.

5.6 Application de la PA17 : Ressource commune

La propriété de ressource commune peut permettre de répondre à un des besoins exprimés par le prestataire de services logistiques, à savoir visualiser les liens existant entre les différentes activités. Ces liens sont en effet matérialisés par les ressources utilisées pour les activités. L’activité de conditionnement à façon (ou co-packing) proposée par le prestataire de services logistiques est prise en compte dans le raisonnement, car des ressources telles que des filmeuses, utilisées pour l’activité de préparation de commandes, sont par exemple aussi utilisées pour le conditionnement à façon. Il s’agit de vérifier si la modification d’une ressource utilisée par une des activités a des répercussions sur une autre et donc de pouvoir répondre à des questions du type:
- La mise en place d’une filmeuse filmant deux fois plus vite pour l’activité de conditionnement à façon aura-t-elle un impact sur l’activité de préparation de commandes (ou inversement) ?
- Quelle est la place optimale pour une filmeuse utilisée pour les activités de préparation de commandes et de conditionnement à façon ?

D’autres questions concernant la comparaison de missions correspondant à une seule activité peuvent être abordées avec la propriété de poste de charge commun, par exemple :
- Quelle est la place optimale pour une imprimante utilisée pour différentes missions de préparation de commandes ?
- Quel est l’emplacement optimal du stock de palettes vides utilisées pour les préparations de commande ?

La propriété de ressource commune peut donc constituer une aide à la décision pour le choix des ressources et leur mise en place au sein d’un entrepôt logistique.

Appliquée aux références stockées, cette propriété peut aussi être utilisée pour répondre à un second besoin exprimé par les concepteurs du système logistique : visualiser les caractéristiques de flux principaux correspondant à certains critères. On peut citer les critères suivants :
- Produits livrés par un certain client (fournisseur) ;
- Produits commandés par un certain client (consommateur) ;
- Produits appartenant à une certaine classe de sécurité (produits inflammables, par exemple).

Une telle visualisation permettrait d’appréhender le cheminement de ces différents types de produits au sein de l’entrepôt et de mettre en évidence une éventuelle logique. Cela pourrait par exemple amener à identifier des zones de stockages indépendantes des autres (en termes de flux), placer stratégiquement une zone de stockage réservée à un certain type de produits dans l’entrepôt, ou encore déterminer s’il est cohérent de réserver une zone de stockage pour un client unique ou de définir une gestion spécifique.

Associée à la propriété de niveau, la propriété de ressource commune permet également d’identifier les ressources utilisées par plusieurs missions ou plusieurs activités distinctes. Un exemple est donné dans la partie 5.8. Application de la PA28 : Niveau.

5.7 Application de la PA26 : Ordre total

La première question qui se pose est la suivante : le concept d’ordre total est-il pertinent en logistique d’entrepôt ? Lors des missions de picking, les prélèvements d’articles sont effectués suivant un ordre défini. On peut alors se demander si cet ordre est comparable à un ordre total et s’il existe une notion d’ordre similaire pour les missions de réception et d’expédition de palettes. Reste ensuite à vérifier si l’application de la propriété d’ordre total aux flux logistiques permet d’améliorer ces derniers par la définition de trajectoires spécifiques. La figure 22 correspond à la représentation conceptuelle d’une mission de préparation de commandes en ordre total. La figure 23 représente la relation d’ordre existant entre les emplacements où des palettes sont saisies ou déposées lors d’une mission de réception. La figure 24 représente la même relation pour une mission d’expédition de palettes homogènes.

Figure 22 : Graphé conceptuel d’une préparation de commandes en ordre total
On voit tout d’abord que la représentation en ordre total des flux logistiques permet bien de visualiser les différents types de mouvements permettant l’analyse des flux linéaires (cf. 4.5. Type d’analyse 5 : Flux linéaire). Les représentations proposées ici comportent des mouvements en séquence et des mouvements de retour arrière.

L’application de la propriété d’ordre total à une mission de picking (figure 22) donne un graphe linéaire, sans aucun retour en arrière. Cela montre que l’activité de picking est construite selon le concept d’ordre : les prélèvements de produits sont effectués suivant un trajet direct, défini au préalable en fonction de la stratégie de picking choisie (en U, en Z, …). L’application du concept d’ordre facilite la recherche du chemin à parcourir, ainsi que celle des références à prélever pour effectuer la mission de préparation de commandes.

Les représentations conceptuelles en ordre total de la réception et de l’expédition (figures 23 et 24) indiquent qu’il y a presque autant d’allers que de retours au sein de chacune de ces missions. La moitié des trajets est donc effectuée à vide, sans transport de marchandise. Cette particularité des flux ne peut pas être directement détectée sur le graphe réel (figure 8). Or, selon Irani [Irani, 1990], les mouvements de retours-arrières et les croisements doivent être éliminés. Deux solutions émergent suite à la représentation conceptuelle des flux de réception et d’expédition : (i) intercaler des quais après chaque emplacement ; (ii) modifier la technologie de manutention utilisée pour que les missions puissent être effectuée en un seul aller-retour. Cela pourrait par exemple être possible avec les trains d’approvisionnement utilisés dans l’industrie automobile. Suite à l’application de la propriété d’ordre total, qui a permis la visualisation des retours-arrières, l’application de la PA23 : Fréquence des mouvements de retour permettrait de comparer différentes technologies envisagées afin de déterminer la plus performante, c’est-à-dire celle qui élimine le plus de retours-arrières.

La représentation conceptuelle des flux suivant la propriété d’ordre total permet ainsi de prendre conscience de caractéristiques des flux, qui ne sont pas visibles directement sur une représentation des flux respectant l’agencement des ressources.

La notion de distance parcourue, très importante en logistique, pourrait être ajoutée à celle d’ordre total. Une représentation des flux respectant l’ordre total entre les différents emplacements et permettant en même temps de visualiser les distances parcourues permettrait de détecter les segments de trajets trop longs par rapport au trajet global. La détection d’un
mauvais choix de quai de réception ou d’expédition pour une mission serait par exemple possible.

5.8 Application de la PA28 : Niveau

La question qui se pose est la suivante : une représentation par niveaux des missions de picking permet-elle de définir des aménagements optimums des ressources nécessaires en amont et en aval de l’activité de prélèvement des articles ? La figure 25 est une représentation conceptuelle par niveaux des deux missions de picking présentés sur la figure 8. Seuls les emplacements du stock de picking ont été représentés.

La représentation par niveaux de missions de picking permet de visualiser des mouvements de dépassement (cf. partie 4.5. type d’analyse 5 : Flux linéaire). Les sources et les puits peuvent de plus être déterminés à partir de ce graphe de niveaux. D’après celui-ci, les emplacements A1 et A3 correspondent à des sources au sein du stock de picking. L’emplacement physique visité avant ces derniers lors d’une mission complète de préparation de commandes est le stock de palettes vides. On peut voir sur la figure 8 que le « stock palettes » est éloigné des emplacements de stockage A1 et A3. Cet aménagement de l’entrepôt entraîne des déplacements longs, qui peuvent être raccourcis. Le rapprochement ou la création d’un stock de palettes vides à proximité des sources minimiserait en effet les distances à parcourir. D’une telle visualisation des flux peut aussi être déduit le meilleur emplacement du ou des poste(s) de contrôle, qui trouveront leur position optimale au plus proche des puits. D’après la représentation des missions de picking sur la figure 25, l’emplacement D2 correspond à un puits pour les deux missions. Pour les missions de picking représentées, le poste de contrôle trouve alors sa position optimale au plus près de D2. L’identification des
sources et des puits au sein du stock de picking permet donc l’optimisation des chemins parcourus par la redéfinition des positions des ressources utilisées en amont et en aval du picking. Ces diverses modifications de l’agencement des installations physiques peuvent entraîner la diminution du temps nécessaire à la préparation des commandes, et donc la diminution des coûts engendrés par cette activité. Trois composantes principales rythment l’activité d’un préparateur de commande : l’information, le déplacement et le prélèvement en lui-même. Selon des observations faites par le prestataire logistique sur lequel se base cette étude, le déplacement seul correspond à 50 à 70% de l’activité de préparation de commandes. Une réduction de 50% du temps de déplacement équivaut alors à une baisse de 30% du temps total de cette activité. Celle-ci étant généralement reconnue comme étant l’activité la plus chère [De Koster et al., 2007], ce gain n’est pas négligeable.

Après l’application de la propriété de niveau aux données de flux de plusieurs missions ou de plusieurs activités, l’application de la propriété de ressource commune permet l’identification des ressources utilisées par les groupes de missions ou d’activités représentées. La figure 26 correspond à la représentation par niveaux partielle des deux missions de picking étudiées précédemment (cf. figure 25), à laquelle ont été ajoutés les ressources amont et aval pour représenter entièrement les missions de préparation de commandes correspondantes.

Figure 26 : Graphe conceptuel de deux missions de préparation de commandes par niveau, avec identification des ressources communes

A partir de la représentation proposée sur la figure 26, les ressources communes aux deux missions de préparation de commandes peuvent être identifiées. Ces ressources communes sont les suivantes : le poste de pilotage, le stock de palettes vides, le poste de contrôle, la filmuse et le quai. Cette représentation permet de plus de conclure que l’emplacement D2 est commun aux deux missions de picking. Couplée à la propriété de niveau, la propriété de ressource commune permet ainsi de mettre en évidence une certaine similitude entre deux missions, voire entre deux activités différentes.
6 Définition d’un référentiel de propriétés d’analyse pour l’aménagement d’entrepôts logistiques

6.1 Objectifs visés

Le choix des propriétés amenées à être intégrées dans le référentiel de propriétés d’analyse pour l’aménagement d’entrepôts logistiques est basé sur leur utilité pour répondre à des besoins exprimés dans le domaine de la logistique d’entrepôt. Différents objectifs peuvent être cités, tels que :
- Placer les références dans les EPR ;
- Limiter les déplacements à vide des caristes ;
- Limiter le déplacement global du cariste et du préparateur de commande ;
- Optimiser les temps de réception, d’expédition, de préparation de commandes et de réapprovisionnement du stock picking ;
- Positionner les emplacements dans l’entrepôt (emplacement des palettes vides, par exemple) ;
- Configurer le stock de picking (positionner chaque référence dans le stock) ;
- Définir le quai optimal pour chaque mission de réception et d’expédition.

6.2 Filtrage des propriétés d’analyse

Le filtrage des propriétés d’analyse est effectué sur la base des conclusions tirées de leur définition et de leur éventuelle application et de leur aptitude à répondre aux objectifs présentés dans la partie précédente (partie 6.1. Objectifs visés). Les propriétés d’analyse non retenues correspondent ainsi à des propriétés jugées non adaptées au cas d’étude ou ayant des résultats d’application similaires à ceux d’autres propriétés.

L’application des propriétés de type 1 et 2 (PA1 à PA5) n’est pas nécessaire pour l’aménagement ou le réaménagement d’un entrepôt, mais peut toutefois constituer une aide à la décision pour le choix des ressources à mettre en place. Suivant la stratégie suivie (spécialisation des ressources ou préférence pour des ressources flexibles par exemple), elles peuvent être utilisées pour la planification de l’évolution du système physique. Les propriétés PA1 et PA2 traitant de la flexibilité des ressources et des gammes logistiques sont donc intégrées au référentiel de propriétés d’analyse pour l’aménagement d’entrepôts logistiques.

L’optimalité d’une gamme logistique étant fonction d’un grand nombre de paramètres, il est jugé préférable de laisser une certaine liberté au décideur quant au choix de la meilleure gamme. Le principe suivi pour répondre au besoin est en effet de « tout représenter pour tout comprendre », à l’inverse de l’optimisation, qui ne fournit qu’une seule solution. La propriété d’analyse PA3 n’est donc pas intégrée au référentiel de propriétés.

Les informations de précédence des opérations et de précédence des ressources étant fournies par la propriété de flexibilité des gammes de production, les deux propriétés correspondantes (PA4 et PA5) sont jugées redondantes et ne sont pas conservées.

Seule la propriété prenant en compte à la fois la classification des produits et celle des ressources (PA8) est conservée dans le type d’analyse 3 : Classification. Les résultats obtenus par l’application des propriétés PA6 et PA7 sont en effet redondants par rapport à ceux obtenus par la propriété PA8.
Les propriétés de fréquence de visite des ressources (PA9) et de poste de charge commun (PA17) permettent de répondre à des besoins exprimés dans le domaine de l’aménagement d’entrepôts logistiques. Elles sont donc toutes deux incluses dans le référentiel.

Les différents mouvements décrits par les propriétés d’analyse du flux linéaire (PA22 à PA25) sont visibles par l’application de la propriété d’ordre total. Ces quatre propriétés sont alors jugées redondantes. La détection des mouvements de retour arrière étant jugée importante et source d’améliorations, la PA23 : Fréquence des mouvements de retour est toutefois conservée.

La propriété d’ordre total (PA26) permet de prendre conscience de caractéristiques des flux, qui ne sont pas visibles directement sur une représentation des flux respectant l’agencement des ressources. Elle est donc intégrée au référentiel de propriétés. La propriété d’ordre partiel (PA27) n’est quant à elle pas conservée, car les résultats de son application aux données de flux sont considérées redondants avec ceux de l’application de la propriété d’ordre total.

Les propriétés de niveau (PA28) et de squelette (PA29) permettent la visualisation de certaines caractéristiques importantes des flux logistiques. Elles sont donc toutes deux conservées.

Parmi les propriétés caractérisant les ressources de début et de fin de gamme, seules les notions générales de source et de puits sont conservées. Les propriétés PA30 à PA32 sont ainsi remplacées par la propriété de « source » et les propriétés PA33 à PA35 sont remplacées par celle de « puits ».

Les propriétés du type d’analyse connexité ne sont enfin pas intégrées dans le référentiel, car elles ne permettent pas de tirer de conclusions probantes sur l’organisation des flux logistiques (PA38 et PA39) ou sont redondantes avec d’autres propriétés faisant partie du référentiel (PA41 et PA42).

Le référentiel de propriétés d’analyse pour l’aménagement d’entrepôts logistiques est donc composé des propriétés listées dans le tableau 5.

Tableau 5 : Référentiel de propriétés d’analyse pour l’aménagement d’entrepôts logistiques

<table>
<thead>
<tr>
<th>Propriétés d’analyse de référence</th>
<th>PAR1</th>
<th>PAR2</th>
<th>PAR3</th>
<th>PAR4</th>
<th>PAR5</th>
<th>PAR6</th>
<th>PAR7</th>
<th>PAR8</th>
<th>PAR9</th>
<th>PAR10</th>
<th>PAR11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibilité des ressources</td>
<td></td>
</tr>
<tr>
<td>Flexibilité des gammes logistiques</td>
<td></td>
</tr>
<tr>
<td>Classification produits / ressources</td>
<td></td>
</tr>
<tr>
<td>Fréquence de visites des ressources</td>
<td></td>
</tr>
<tr>
<td>Ressource commune</td>
<td></td>
</tr>
<tr>
<td>Fréquence des mouvements de retour</td>
<td></td>
</tr>
<tr>
<td>Ordre total</td>
<td></td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Squelette</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>Puits</td>
<td></td>
</tr>
</tbody>
</table>

Le référentiel obtenu est différent de celui défini par Dkhil [Dkhil, 2001], pour l’aménagement d’ateliers de production (cf. tableau 6). Des besoins plus larges ont en effet
été pris en compte, tels que la représentation des liens entre les différentes activités ou la simulation de mise en place de nouveaux équipements.

Tableau 6 : Référentiel de propriétés d’analyse pour l’aménagement d’ateliers de production

<table>
<thead>
<tr>
<th>PAR</th>
<th>Propriétés d’analyse en production</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR1</td>
<td>Flexibilité des postes de charge</td>
</tr>
<tr>
<td>PAR2</td>
<td>Flexibilité des gammes de production</td>
</tr>
<tr>
<td>PAR3</td>
<td>Classification produits / postes de charge</td>
</tr>
<tr>
<td>PAR4</td>
<td>Ordre total</td>
</tr>
<tr>
<td>PAR5</td>
<td>Ordre partiel</td>
</tr>
<tr>
<td>PAR6</td>
<td>Niveau</td>
</tr>
<tr>
<td>PAR7</td>
<td>Squelette</td>
</tr>
<tr>
<td>PAR8</td>
<td>Source totale</td>
</tr>
<tr>
<td>PAR9</td>
<td>Puits total</td>
</tr>
</tbody>
</table>

7 Limites et perspectives de recherche

L’étude présentée a tout d’abord permis de vérifier que des propriétés définies pour la conception de systèmes physiques dans le domaine de la production ont un sens dans le domaine de la logistique d’entrepôt. Les différentes applications indiquent de plus que ces propriétés peuvent être utiles dans un processus de (ré)aménagement des équipements d’un entrepôt logistique. Cela montre que des connaissances développées pour l’aménagement de systèmes de production sont transférables dans le domaine de l’aménagement d’entrepôts logistiques.

Cela peut être expliqué par le fait que les quatre activités de base, à savoir déplacer, stocker, transformer et contrôler, se retrouvent à la fois en production et en logistique d’entrepôt. Ces activités n’ont toutefois pas la même importance dans chacun des domaines : l’activité de transformation est bien plus présente en production qu’en logistique, qui est essentiellement constituée de l’activité de déplacement. Les besoins en logistique d’entrepôt ne sont alors pas tout à fait les mêmes qu’en production. Dans un atelier de production, ce sont les flux de produits qui sont à suivre et à piloter en priorité. En logistique d’entrepôt, l’analyse des flux de produits (palettes, colis, …) permet de tirer des pistes d’amélioration de l’aménagement des installations physique. Elle permet par exemple de détecter les déplacements inutiles (passage par un stock tampon, déplacement d’un emplacement de stockage à un autre sans ajout de valeur ajoutée entre les deux, …) ou de détecter les temps de stockage de chaque référence. Mais le flux physique le plus important est constitué des déplacements des personnes (caristes, préparateurs de commande, …). Ces derniers sont en effet les plus importants en termes de distances parcourues et donc de coût. Une part non négligeable de ces déplacements est de plus effectuée « à vide », sans transport de marchandise. Le flux des personnes présente donc des possibilités d’optimisation non négligeables.

L’étude de la transposabilité des quarante-quatre propriétés recensées par Dkhil [Dkhil et al., 2010] a enfin permis de constituer un référentiel de propriétés pour l’analyse des flux dans le domaine de la logistique d’entrepôt. Ce référentiel n’est pas tout à fait le même que celui
défini pour le domaine de la production. Des différences importantes distinguent en effet les deux domaines comparés. En production, les activités, bien que dépendantes des commandes des clients, se traduisent toujours par le même panel de gammes de production. Chacune de ces gammes entraîne la formation d’un flux physique bien défini au sein de l’atelier et connu à l’avance. En logistique d’entrepôt, il est important de prendre en compte le caractère aléatoire des commandes et par extension des activités elles-mêmes. Pour deux commandes rigoureusement identiques, les missions associées peuvent de plus être différentes en termes de flux physiques. Des missions de réception ou d’expédition peuvent se traduire par des flux totalement différents si les références à prêlever ne sont pas stockées au même endroit. Or, l’attribution d’emplacements de stockage est généralement aléatoire. Des missions de préparation de commandes peuvent elles aussi différer, en fonction (i) du positionnement des références dans le stock de picking au moment du prélèvement et (ii) de la formation des palettes, qui peut agir sur le nombre de palettes et donc sur les flux physiques (plus ou moins d’allers-retours entre le stock de picking et le poste de contrôle, par exemple).

Le niveau de détail auquel il est nécessaire de décomposer le système physique n’est pas le même dans les deux domaines. Les flux physiques étant limités dans un atelier de production, la définition de zones de stockage est suffisante. Dans un entrepôt logistique, cette décomposition n’est pas assez fine. La notion de distance étant très importante, il s’agit de descendre au niveau de la cellule (groupe d’emplacements de stockage), voire de l’emplacement de stockage.

Le référentiel de propriétés d’analyse défini pour l’aménagement d’entrepôts logistiques est encore à compléter par d’autres propriétés. Pour cela, il s’agit d’étudier l’existence de propriétés d’analyse éventuellement proposées dans la littérature traitant des problématiques des entrepôts logistiques. Une commande en logistique d’entrepôt correspondant à la notion de produit en production, la classification des commandes est un exemple de propriété pertinente. Le référentiel construit pourrait à terme servir de base à la construction d’un modèle de référence permettant une représentation globale et détaillée des flux physiques au sein d’un entrepôt logistique.
8 Références

Singleton W.T. Optimum sequencing of operations for batch production, in Work Study and Industrial Engineering, 1962, p. 100 – 110.

Stecke K.E., Raman N. FMS Planning decisions, operating flexibilities and system performance, in Research Support School of Business Administration, revised May 1994.

Annexe 1 : Processus

Représentation des processus de réception et d’expédition de marchandise, tirée des guides de pilotages.
Annexe 2 : Etude de la flexibilité des ressources

Etude complète de la flexibilité des ressources (PA1).